



**ADVOCATE**HEALTH

# **Heart Failure in Ambulatory Care**

## *What's New, What's Next?*

*Collin Kruczak, PharmD – PGY2 Ambulatory Care Atrium Health  
Charlotte NC*

*Joseph Loredo, PharmD – PGY2 Ambulatory Care Aurora St. Luke's  
Milwaukee, WI*

02/24/2026

# Disclosures

The planner(s) and speaker(s) have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

# Learning Objectives

At the end of this session, learners should be able to:

- Recognize the pathophysiology and classification of heart failure across the ejection fraction spectrum
- Identify strategies for implementation and titration of guideline-directed medication treatment (GDMT) for heart failure with reduced ejection fraction (HFrEF)
- Select a GDMT regimen for a patient with heart failure with preserved ejection fraction (HFpEF)
- Identify the updated literature surrounding HFpEF

# Abbreviation Key

- ACE: angiotensin converting enzyme inhibitor
- ARB: angiotensin receptor blocker
- ARNi: angiotensin receptor / neprilysin inhibitor
- BB: beta blocker
- BP: blood pressure
- CCB: calcium channel blocker
- CV: cardiovascular
- DPP4i: Dipeptidyl peptidase-4 inhibitor
- EGFR: estimated Glomerular filtration rate
- GDMT: guideline directed medication therapy
- GLP1-RA: glucagon-like peptide 1-receptor agonist
- HCTZ: hydrochlorothiazide
- HF: heart failure
- HFH: heart failure hospitalizations
- HFimpEF: Heart failure with improved ejection fraction
- HFmrEF: heart failure with mildly reduced ejection fraction
- HFpEF: heart failure with preserved ejection fraction
- HFrEF: heart failure with reduced ejection fraction
- HR: heart rate
- IV: intravenous
- KCCQ-TSS: Kansas City Questionnaire Total Symptom Score
- LVEF: left ventricular ejection fraction
- MDD: Max daily dose
- MRA: mineralocorticoid receptor antagonist
- NSAIDs: Non-steroidal anti-inflammatory drugs
- NYH: New York Heart Association
- O2: oxygen
- SCr: serum creatinine
- SGLT2i: sodium glucose transporter 2 inhibitor
- UTI: urinary tract infections

# Heart Failure with Reduced Ejection Fraction (HFrEF)

# HFrEF Outline

---

Heart failure background and pathophysiology

---

Pharmacotherapy overview

---

Therapy initiation strategies

---

Patient Cases

# Heart Failure Overview

- Heart failure is a leading cause of hospitalization among older adults and is associated with high rates of readmission
- In 2022, heart failure accounted for 9.3% of all cardiovascular deaths in the United States (~87,000 patients)
- By 2030, total HF-related costs are projected to exceed \$70 billion annually
- Hospitalizations and rehospitalizations account for 75–80% of direct HF-related healthcare costs

# HFrEF

- Heart Failure with reduced Ejection Fraction (HFrEF)
- Characterized by a left ventricular ejection fraction (LVEF) of  $\leq 40\%$
- Also known as **systolic HF** indicating impaired contractile function of the heart muscle

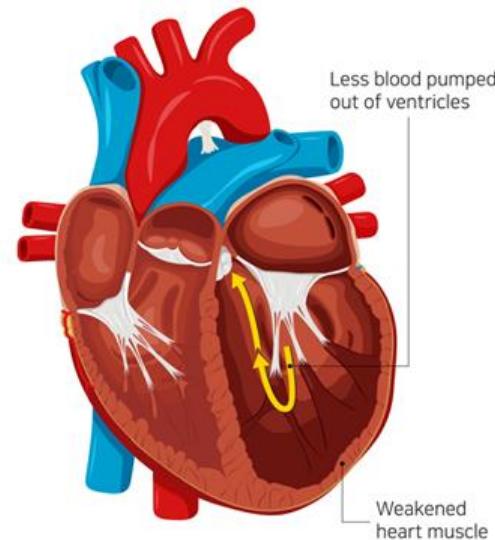
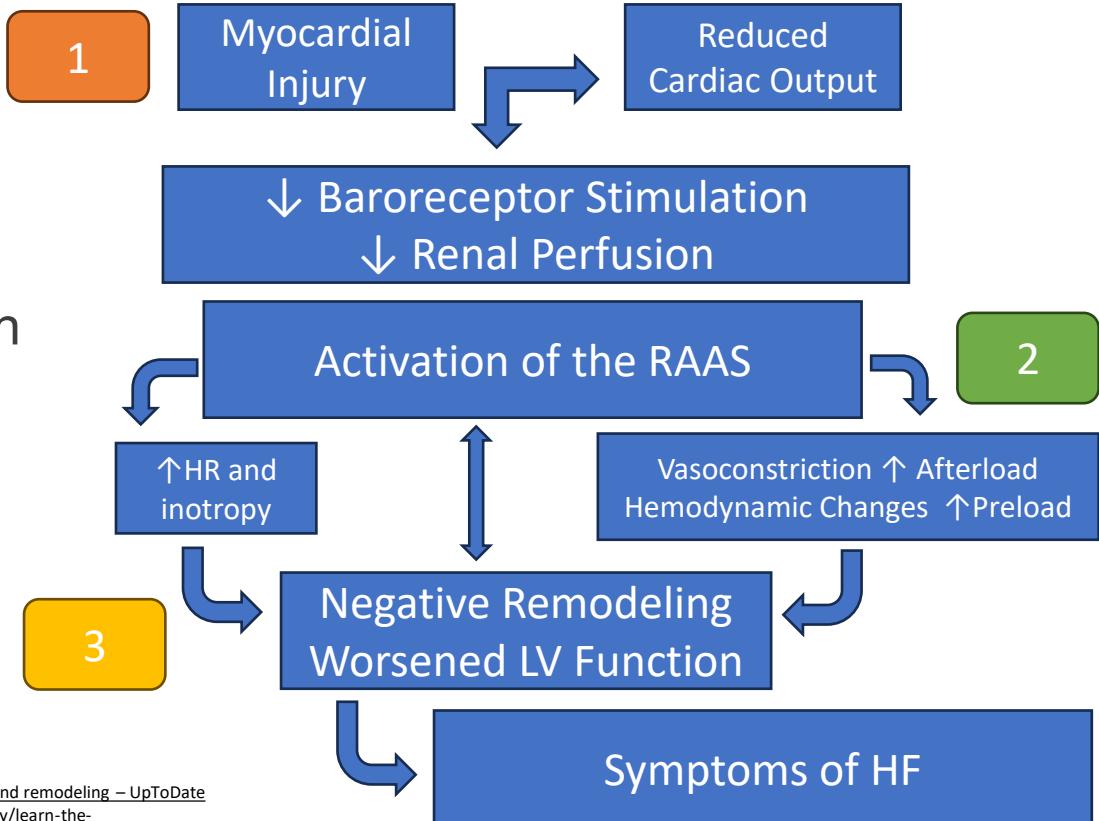




Figure 1. Systolic Dysfunction

# HFrEF Pathophysiology

1. Hemodynamic changes
2. Neurohormonal activation
3. Structural remodeling



[Pathophysiology of heart failure with reduced ejection fraction: Hemodynamic alterations and remodeling – UpToDate](#)

Chronic Heart Failure – Heilio.com. Access 23 July, 2025. <https://www.heilio.com/cardiology/learn-the-heart/cardiology-review/topic-reviews/systolic-congestive-heart-failure>

Figure. 2 HFrEF Pathophysiology Adapted from Heilio

# HF Symptoms

Figure 3. Pitting Edema



Image Courtesy of Dr. James Heilman – Creative Commons

## Lack of O2

- Confusion
- Weight gain
- Fatigue
- Discolored or bluish skin
- Reduced exercise tolerance

## Fluid Build Up

- Lung congestion
- Shortness of breath
- Coughing and wheezing
- Loss of appetite
- Swelling of feet and abdomen

# Causes of HF

## Most common causes:

Ischemic heart disease  
Myocardial infarction  
Hypertension  
Valvular heart disease

- Familial or genetic cardiomyopathies
- Cardiotoxicity due to chemotherapy/other cardiotoxic medications
- Substance abuse (e.g., cocaine, alcohol, methamphetamines)
- Heart rhythm-related
- Amyloidosis
- Peripartum cardiomyopathy
- Myocarditis
- Autoimmune or rheumatologic causes
- Sarcoidosis
- Iron overload
- Endocrine or metabolic causes (e.g., diabetes, obesity, thyroid disorders)

# HF Classification by EF

Adapted from Table 4. Classification of HF by LVEF

| Type of HF                         | Criteria                                                           |
|------------------------------------|--------------------------------------------------------------------|
| HFrEF (HF with reduced EF)         | LVEF $\leq$ 40%                                                    |
| HFimpEF (HF with improved EF)      | Previous LVEF $\leq$ 40% and follow up measurement of LVEF $>40\%$ |
| HFmrEF (HF with mildly reduced EF) | LVEF 41-49%                                                        |
| HFpEF (HF with preserved EF)       | LVEF $\geq$ 50%                                                    |

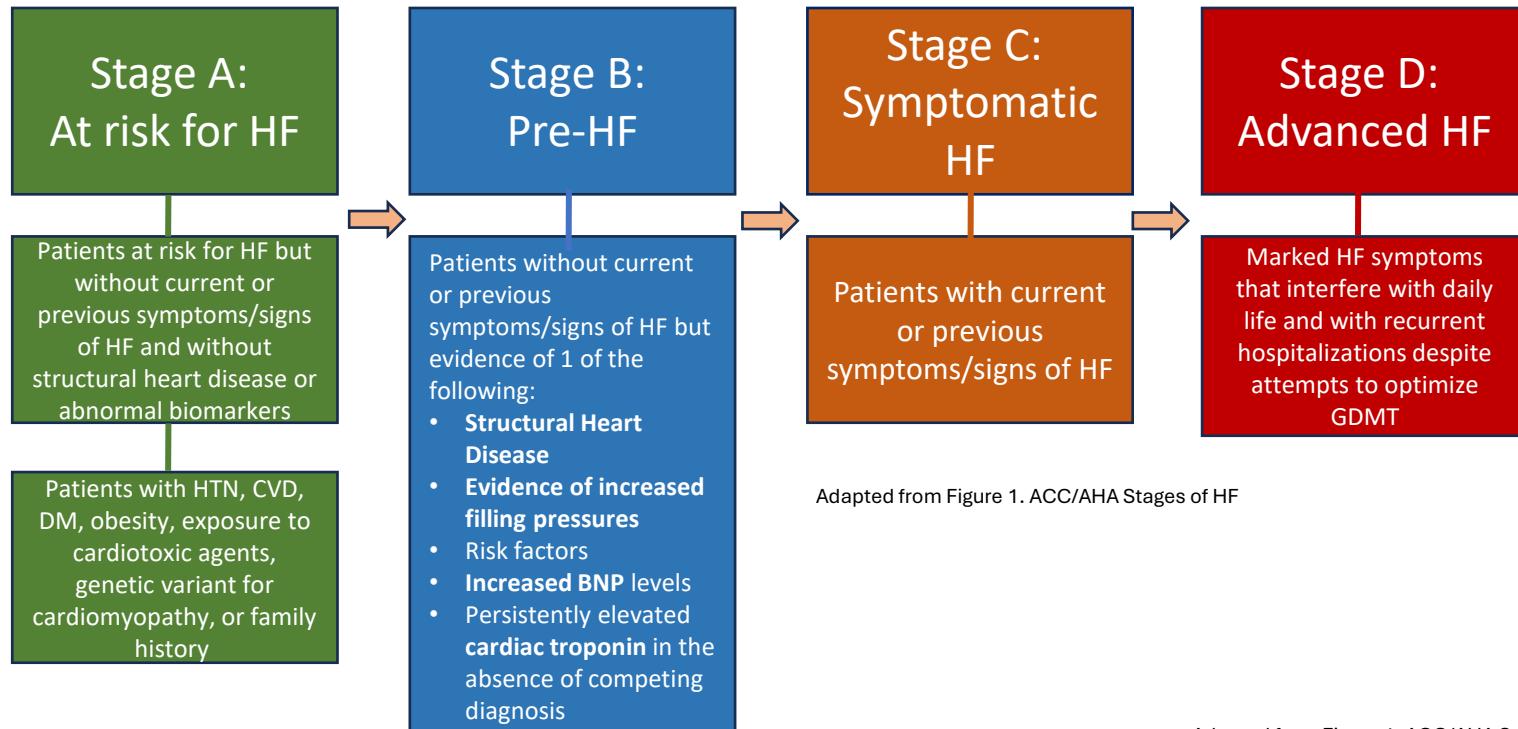

# New York Heart Association (NYHA) Classification

Table. Classification of NYHA

| Class | Symptoms                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| I     | No limitation of physical activity                                                                                                        |
| II    | Slight limitation of physical activity, comfortable at rest. Ordinary Physical activity results in fatigue, palpitations, SOB, chest pain |
| III   | Marked limitation of physical activity. Comfortable at rest. Less than ordinary activity causes fatigue, palpitations, SOB, chest pain    |
| IV    | Symptoms of HF at rest. Any physical activity causes further discomfort                                                                   |

- Used to characterize symptoms and functional capacity of patients with **symptomatic (stage C) HF** or **advanced HF (stage D)**
- Subjective assessment that can change overtime
- Independent predictor of mortality
- Used to determine eligibility of patients for treatment strategies

# Figure 4. HF Stages



Adapted from Figure 1. ACC/AHA Stages of HF

Adapted from Figure 1. ACC/AHA Stages of HF

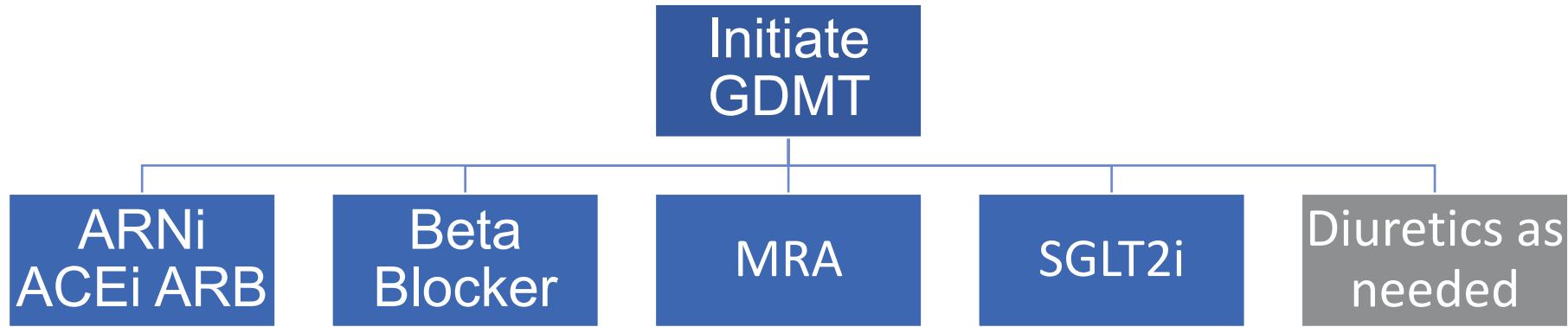
# Stage C Heart Failure

# Nonpharmacologic Interventions

Multidisciplinary approach

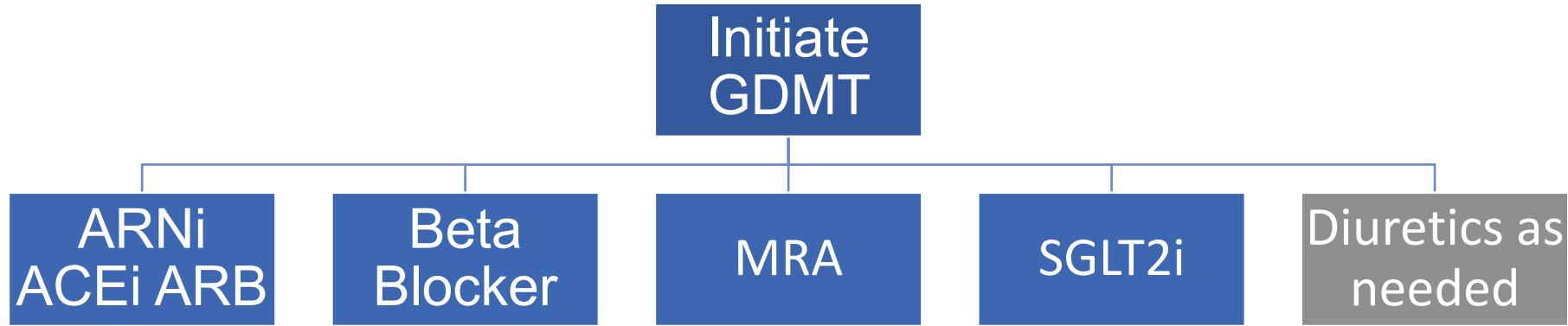
Routine vaccinations against respiratory illness

Education on HF to encourage engagement in self-care habits


Avoiding excessive sodium (<2 g/day)

Avoiding alcohol, smoking, and illicit substances

Regular physical activity (if able to tolerate)


# Pharmacotherapy

# Guideline Directed Medication Therapy



The 4 “Pillars” of GDMT have demonstrated mortality benefit!

# Guideline Directed Medication Therapy



The 4 “Pillars” of GDMT have demonstrated mortality benefit!



# Renin-Angiotensin System Inhibition



## PARADIGM-HF

Sacubitril-valsartan significantly reduced the composite endpoint of cardiovascular death or HF hospitalization by **20% relative to enalapril (P<0.001)**

- ACEi and ARB have demonstrated mortality benefit
- ARNi is recommended if tolerated to **further improve mortality benefit (PARADIGM-HF)**

| Drug                     | Initial Dose            | Target Dose   |
|--------------------------|-------------------------|---------------|
| Sacubitril/<br>Valsartan | 24/26mg-<br>49/51mg BID | 97/103mg BID  |
| Lisinopril               | 2.5-5mg daily           | 20-40mg daily |
| Enalapril                | 2.5mg BID               | 10-20mg BID   |
| Losartan                 | 25-50mg daily           | 150mg daily   |
| Valsartan                | 20-40mg BID             | 160mg BID     |

# ACEi / ARB / ARNi Pearls

Treatment with ACEi or ARB provides **high economic value**

Intolerant to ACEi because of cough or angioedema = ARB is recommended to reduce morbidity and mortality

**Do not administer** an ARNi or ACEi if patient has any history of angioedema

**36 hour washout required** when switching ACEi to an ARNi to lower angioedema risk

# Beta Blockers



| CIBIS-II | MERIT-HF | COPERNICUS |
|----------|----------|------------|
|----------|----------|------------|

Trials stopped early given **significant reduction** in mortality

| Agent                | Class/MOA                                   | Initial Dose    | Target Dose                                                       |
|----------------------|---------------------------------------------|-----------------|-------------------------------------------------------------------|
| Bisoprolol           | B1 (cardio) selective                       | 1.25mg daily*   | 10mg daily                                                        |
| Carvedilol IR        | Nonselective with alpha 1 blocking activity | 3.125mg BID     | $\leq 85\text{kg}$ :<br>25mg BID<br>$> 85\text{kg}$ :<br>50mg BID |
| Carvedilol CR        |                                             | 10mg daily      | 80mg daily                                                        |
| Metoprolol succinate | B1 (cardio) selective                       | 12.5-25mg daily | 200mg daily                                                       |

CIBIS-II Trial. Lancet. 1999;353(9146):9-13.

MERIT-HF Trial. Basic Res Cardiol. 2000;95 Suppl 1:I98-I103

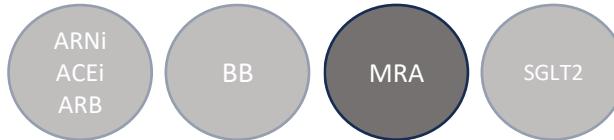
COPERNICUS Trial. Circulation. 2002;106(17):2194-2199

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines | Circulation

# BB Pearls

## Carvedilol preferred

- Cocaine use disorder
- More BP lowering effect needed


## Metoprolol, bisoprolol preferred

- Uncontrolled Asthma, COPD patients or individuals with active wheezing

## Do not initiate or increase while fluid overloaded

## May initiate in mild fluid overload with concomitant diuretic adjustments

# MRA



| RALES | EMPHASIS-HF |
|-------|-------------|
|-------|-------------|

Trials stopped early for **reducing all-cause mortality via composite score**

- Show improvements in all-cause mortality, HFH, and sudden cardiac death
- Recommended for patients with NYHA class II to IV symptoms
  - **If eGFR > 30 ml/min AND serum K < 5.0**

| Agent          | Initial Dose    | Target Dose                |
|----------------|-----------------|----------------------------|
| Spironolactone | 12.5-25mg daily | 25-50mg in 1-2 daily doses |
| Eplerenone     | 25mg daily      | 50mg daily                 |

RALES Trial. N Engl J med. 1999. 341. (10) 709-717.

EMPHASIS-HF Trial. N Engl J Med. 2011;364(1):11-21.

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines | Circulation

# MRA Pearls


May use eplerenone if gynecomastia

If using spiro 12.5 mg will need to use 25 mg tablets

- Pharmacies typically do not carry 12.5 mg, split tablets

May need to decrease or discontinue potassium supplementation upon starting

# SGLT2i



## EMPEROR-Reduced

## DAPA-HF

Demonstrated SGLT2 **significantly reduced the primary outcome composite of CV death or HFH**

| Agent         | Dose       |
|---------------|------------|
| Dapagliflozin | 10mg daily |
| Empagliflozin | 10mg daily |

In patients with symptomatic chronic HFrEF, SGLT2i are recommended to reduce hospitalization for HF and CV mortality, **irrespective of T2DM**

- Titration not needed - start at 10 mg

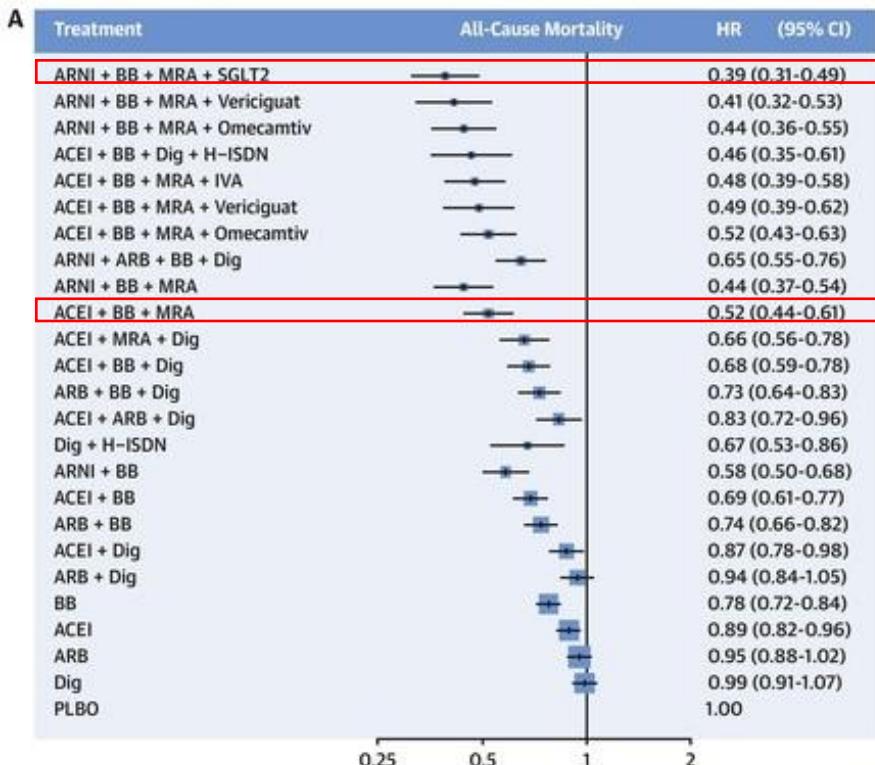
EMPEROR-Reduced Trial. N Engl J med. 2020. 383: 1414-1424.

DAPA-HF Trial. N engl J Med. 2019. 381:1995-2008

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines | Circulation

# SGLT2i Pearls

NOT recommended in patients with Type I Diabetes


Caution in patients with uncontrolled Type II diabetes (A1c>10%) due to risk of GU infections

Educate and monitor for GU infections, Fournier's gangrene, euglycemic DKA

May consider lowering loop dose prior to initiation if patient susceptible to hypotension or hypovolemia

Cost considerations

**Figure. Relative Risk Reduction of Different Pharmacological Treatment Combinations for HF**



**4 Pillars  
Mortality  
Benefit = 61%**

# Diuresis Strategies

Treatment goal: eliminate clinical evidence of fluid retention, using the **lowest dose possible** to maintain euvoolemia.

| Drug                      | Initial Daily Dose       | MDD    | Duration of Action |
|---------------------------|--------------------------|--------|--------------------|
| <b>Loop Diuretics</b>     |                          |        |                    |
| Bumetanide                | 0.5–1.0 mg once or twice | 10 mg  | 4–6 h              |
| Torsemide                 | 10-20 mg once            | 200 mg | 12-16 h            |
| Furosemide                | 20–40 mg once or twice   | 600 mg | 6–8 h              |
| <b>Thiazide diuretics</b> |                          |        |                    |
| Metolazone                | 2.5 mg once              | 20 mg  | 12–24 h            |

# Additional Therapy

# Hydralazine and Isosorbide

- Self-identified AA patients with NYHA class III-IV HFrEF who are on GDMT, hydralazine and isosorbide are recommended to improve symptoms and reduce morbidity and mortality
- Can be considered in patients who cannot tolerate ACEi /ARB/ARNi

| Agent                                 | Initial Dose                                                                       | Target Dose                                                                       |
|---------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Isosorbide dinitrate plus hydralazine | 20mg isosorbide plus 25mg hydralazine TID (fixed dose combination 20mg/37.5mg TID) | 40mg isosorbide plus 100mg hydralazine TID (fixed dose combination 40mg/75mg TID) |

# Other Treatments

## Ivabradine: “funny current” inhibitor

- If resting HR remains > 70 BPM on max BB and GDMT and NYHA class II-III
- May be beneficial to reduce HFH and CV death
- No proven mortality benefit

## Vericiguat: oral soluble guanylyl cyclase stimulator

- For frequent hospitalizations, SBP > 100mmHg and NYHA Class II-IV **without marked elevations to BNP**
- May be beneficial to reduce HFH and CV death
- No proven mortality benefit

## Digoxin

- For HF targeting lower digoxin level of 0.8
- May be beneficial to reduce HFH
- No proven mortality benefit

# Sequencing

# Sequencing

## STRONG-HF (n=1,078)

Emphasized rapid titration of GDMT within 2 weeks post-discharge for acute HF

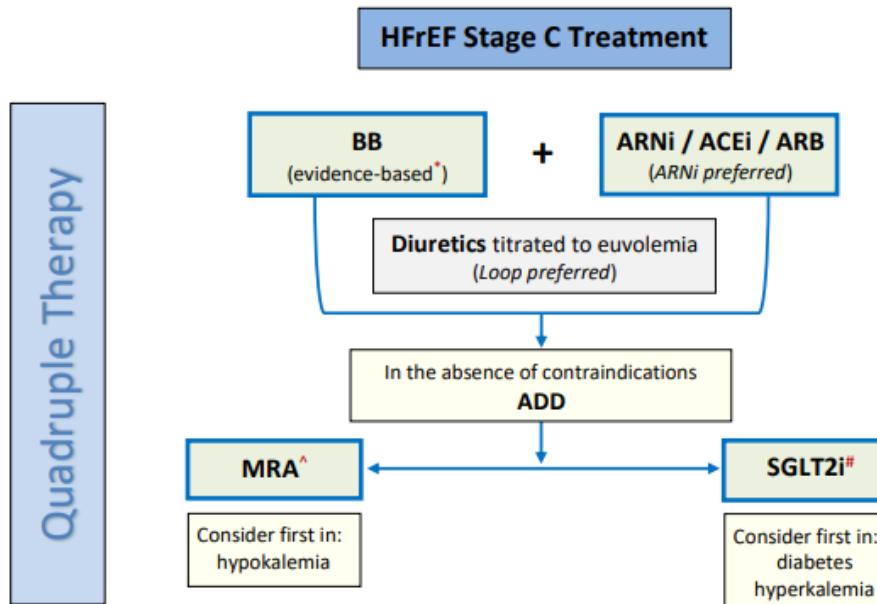
Each 10% increase in average dose was associated with a **11% reduction in all-cause death or HF readmission** (adjusted HR 0.89)

## TITRATE-HF (n=4,288)

Ongoing long-term HF registry conducted in the Netherlands

**44%** of HFrEF patients were on **quadruple GDMT** (RAASi, BB, MRA, SGLT2i).

Only **1%** achieved **target doses for all four classes**


In each GDMT drug class, 19% to 36% of non-use in HFrEF patients was related to side-effects, intolerances, or contraindications.

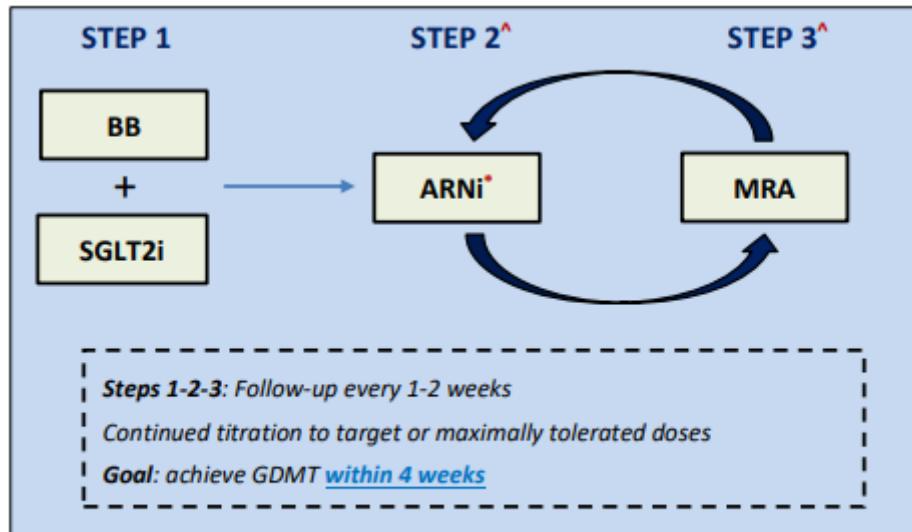
Mebazaa A, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF). *Lancet*. 2022;400(10367):1938-1952

Malgie J, et al. Contemporary guideline-directed medical therapy in de novo, chronic, and worsening heart failure patients: First data from the TITRATE-HF study. *Eur J Heart Fail*. 2024;26(7):1549-1560.

# Sequencing

Figure. Standard Approach to Achieving Quadruple GDMT




\* Evidence-based BB include carvedilol, metoprolol succinate, and bisoprolol

<sup>†</sup> eGFR  $\geq$  30 mL/min/1.73<sup>m2</sup> (or SCr  $\leq$  2.5 [male] / SCr  $\leq$  2.0 [female]) or K $\leq$  5.0 mmol/L

<sup>#</sup> Refer to eGFR criteria for use

# Alternative Sequencing

Figure. Alternative GDMT Initiation and Titration Algorithm



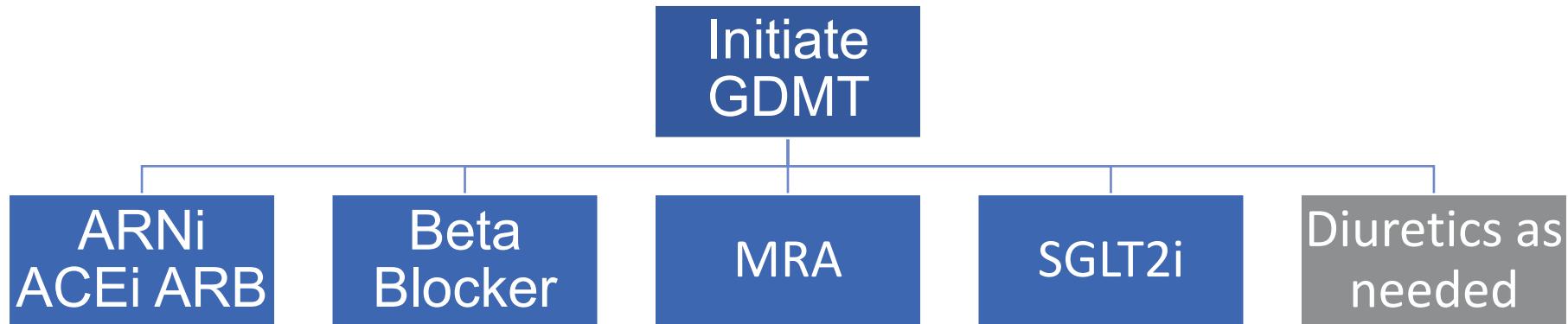
\*Use ACEI/ARB if unable to start ARNI

<sup>^</sup>Sequencing of Steps 2 and 3 can be modified for clinical factors (BP, renal function, potassium)

# Simultaneous Start

| Simultaneous or Rapid Sequence Initiation of Quadruple GDMT |                      |                                  |                                  |                                  |                                                                                           |
|-------------------------------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|
| Agent                                                       | Day 1                | Day 7-14                         | Days 14-28                       | Day 21-42                        | After Day 42                                                                              |
| ARNi*                                                       | Initiate at low dose | Continue current dose            | <b>Titrate</b> dose as tolerated | <b>Titrate</b> dose as tolerated | Continue up titration of quadruple combination GDMT to maximally tolerated or target dose |
| BB                                                          | Initiate at low dose | <b>Titrate</b> dose as tolerated | <b>Titrate</b> dose as tolerated | <b>Titrate</b> dose as tolerated |                                                                                           |
| MRA                                                         | Initiate at low dose | Continue current dose            | <b>Titrate</b> dose as tolerated | Continue current dose            |                                                                                           |
| SGLT2i                                                      | Initiate             | Continue current dose            | Continue current dose            | Continue current dose            |                                                                                           |

\*Use ACEi/ARB if unable to start ARNi


# Lab Monitoring

Kidney function,  
potassium (K)

BMP prior to  
initiation and 1- 2  
weeks after initiation  
or titration

May cause increase  
in SCr but continue  
unless > 30% from  
baseline

# Guideline Directed Medication Therapy



# Treatments to Avoid

| Medication Class                              | Examples                                                            | Mechanism                                                 |
|-----------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|
| NSAIDs (Nonsteroidal Anti-inflammatory Drugs) | Ibuprofen, Naproxen, Indomethacin, meloxicam, nabumetone, celecoxib | Sodium and water retention causes ↑ preload and afterload |
| Thiazolidinediones                            | Pioglitazone, Rosiglitazone                                         | Fluid retention via PPAR-γ activation                     |
| DPP-4 inhibitors                              | Saxagliptin, alogliptin                                             | Increased hospitalization risk                            |
| Non-DHP Calcium Channel Blockers              | Verapamil, Diltiazem                                                | Negative inotropy causes ↓ cardiac output                 |
| Class I Antiarrhythmics                       | Flecainide, Propafenone                                             | Negative inotropy and proarrhythmic risk                  |
| Class III Antiarrhythmics                     | Dronedarone                                                         | Increased mortality in HF patients                        |
| Corticosteroids                               | Prednisone, Dexamethasone                                           | Sodium and water retention                                |
| Androgenic/Estrogenic Hormone                 | Testosterone, Estrogen                                              | Fluid retention                                           |
| Chemotherapy Agents                           | Anthracyclines (Doxorubicin), Trastuzumab                           | Direct cardiotoxicity                                     |
| Sympathomimetics                              | Decongestants (Pseudoephedrine)                                     | ↑ HR and BP causes ↑ cardiac workload                     |

## HFimpEF (<40% → 40%+)

- Trials demonstrate continuation of GDMT despite LVEF recovery
- **Indefinite therapy**

## HFmrEF (41-49%)

- Trials demonstrate GDMT benefit

# Summary

4 Pillars of GDMT = 61% reduction in all cause mortality



Treatment is individualized to patients based on:

- Vital signs
- Tolerance
- Electrolytes
- Functional Status
- Renal Function
- Comorbidities
- Monitoring capabilities
- Affordability / access

# Assessment Question #1

Patient: JT a 68-year-old white male

Past Medical History:

- HFrEF diagnosed 2 years ago (most recent LVEF 30% 11/10/25)
- NYHA Class III symptoms
- Hypertension, Type 2 Diabetes Mellitus (A1c 10%)

Objective:

BP: 120/74 mmHg, HR: 62 bpm

K+: 4.5 mmol/L, SCr: 1.1 mg/dL, eGFR = 62 ml/min, NT-proBNP: 28 mg/dl

Current medications:

- Lisinopril 10 mg daily**
- Metoprolol succinate 100 mg daily**
- Furosemide 40 mg daily**
- Metformin XR 500 mg twice daily**

# Assessment Question #1

Which of the following is the MOST appropriate next step in optimizing GDMT for this patient?

- A. Increase Furosemide 80 mg once daily
- B. Switch Lisinopril to Sacubitril/Valsartan immediately
- C. Add Spironolactone 25 mg once daily
- D. Add Ivabradine 2.5 mg twice daily

# Assessment Question #2

**Patient:** LR 72-year-old African American female

Past medical history:

- HFrEF (LVEF 35%) diagnosed 6 months ago
- NYHA Class II symptoms
- HTN, CKD Stage 4

Objective

BP: 118/76 mmHg, HR: 68 bpm, eGFR: 25 mL/min/1.73m<sup>2</sup>, A1c = 5.8%

- Current medications:
  - **Carvedilol 6.125 mg twice daily**
  - **Losartan 100 mg daily**
  - **Empagliflozin 10 mg daily**
  - **Furosemide 20 mg daily**

# Assessment Question #2

Which of the following best describes the role of SGLT2 inhibitors in this patient's heart failure management?

- A. Empagliflozin should be discontinued due to her renal function
- B. SGLT2i are only indicated for glycemic control in diabetic patients
- C. Empagliflozin provides CV benefit in HFrEF regardless of diabetes
- D. SGLT2 inhibitors are contraindicated in NYHA Class II heart failure

# Heart Failure with Preserved Ejection Fraction (HFpEF)

# HFpEF Outline

---

**Background**

---

**GDMT Recommendations**

---

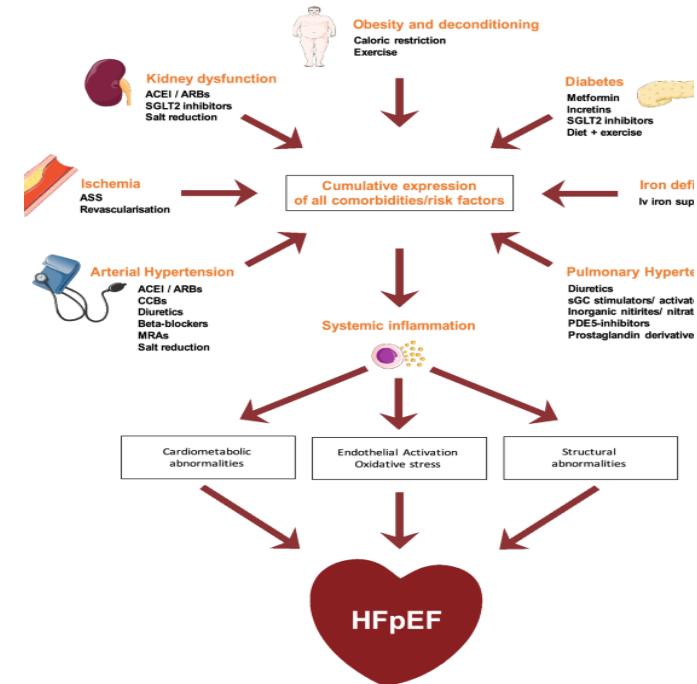
**Updated or Emerging Literature**

# Definition of HFpEF

Clinical syndrome:

EF > 50%

Signs/symptoms of HF


Plus one of the following:

- Objective evidence of cardiogenic pulmonary or systemic congestion
- Elevated natriuretic peptides

# Pathophysiology

Multifactorial syndrome:

- Caused by multiple pathological mechanisms
- Cardiac aging and cardiometabolic disorders
- Higher prevalence of comorbidities



# Epidemiology of HFrEF

- HFrEF affects ~ 3 million people within the United States
- Represents ~ 50% of all heart failure hospitalizations
- Mortality associated with HFrEF ranges
  - 15% at 1 year
  - 75% at 5 to 10 years after hospitalization
- Mortality often driven by non-cardiac comorbidities (e.g. HTN, DM, renal failure)

# Risk Factors

## Demographics

- Older age
- Female sex

## Cardiac

- Atrial fibrillation
- Valvular heart disease

## Cardiometabolic

- HTN
- T2DM

## Pulmonary & Renal

- OSA
- CKD

## Other

- High sodium diet
- Chronic systemic inflammation

# Diagnosis of HFpEF

## Physical examination

- Dyspnea, JVD, Edema

## Differential diagnosis

- Non-cardiac & cardiac mimics
- Pulmonary testing

## Laboratory

- BNP > 35 pg/mL
- NT-proBNP > 125 pg/mL

## Imaging

- Echocardiogram

## Scoring systems

- H2FPEF
- HFA-PEFF

# Limitations in Diagnosis

- Lack of single diagnostic test for definitive diagnosis
- Factors Affecting Natriuretic Peptide Interpretation
  - **Falsely Elevated Levels**
    - Renal Impairment
    - Atrial Fibrillation
  - **Falsely Reduced Levels**
    - Obesity

# Screening

In adults who are at increased risk for the development of asymptomatic cardiac structure or functional abnormalities consider:

- Screening adults with diabetes by measuring a BNP or NT-proBNP
- In asymptomatic individuals with diabetes and abnormal BNP or NT-proBNP an echocardiogram is recommended

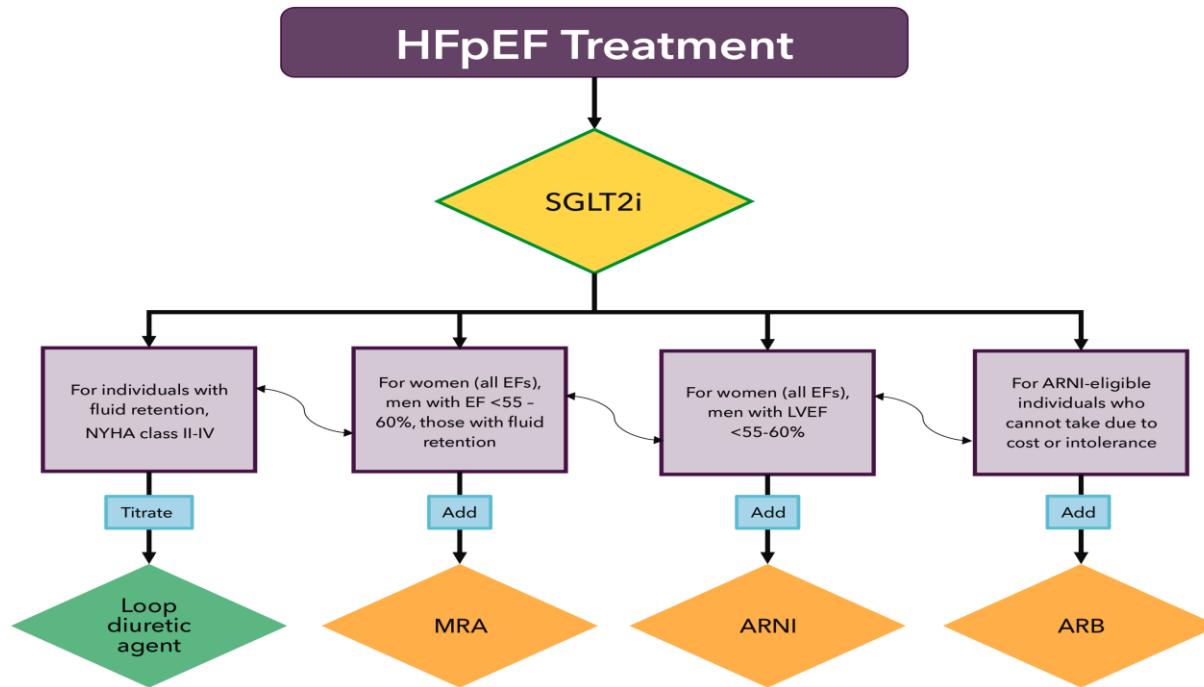
# Treatment Goals

- Reduce symptoms and physical limitations
- Prevent heart failure hospitalizations
- Decrease cardiovascular morbidity and mortality
- Management of other comorbidities
  - HTN
  - Diabetes
  - Atrial fibrillation
  - Obesity
  - CKD

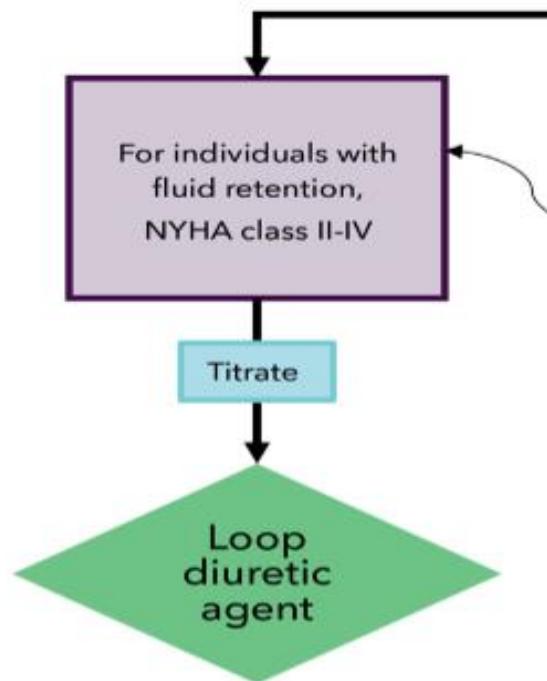
# HFpEF Outline

---

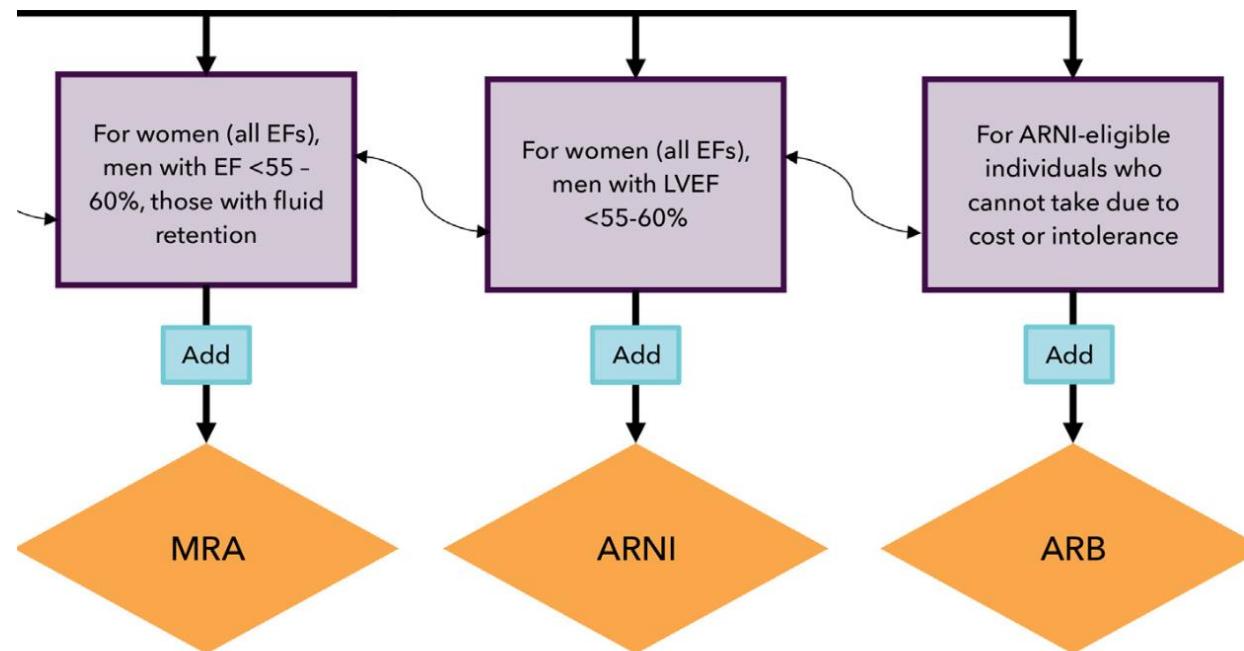
Background


---

**GDMT Recommendations**


---

Updated or Emerging Literature


# Current GDMT Recommendations



# Current GDMT Recommendations



# Current GDMT Recommendations



# Current GDMT Recommendations

| Drug class                                                 | Starting dose        | Target dose           |
|------------------------------------------------------------|----------------------|-----------------------|
| SGLT2i<br>- <b>Dapagliflozin</b><br>- <b>Empagliflozin</b> | 10 mg daily          | 10 mg daily           |
| ARNIs<br>- <b>Sacubitril/valsartan</b>                     | 24/26 mg twice daily | 97/103 mg twice daily |
| ARBs<br>- <b>Candesartan</b>                               | 4-8 mg daily         | 32 mg daily           |
| MRA<br>- <b>Spironolactone</b>                             | 25 mg daily          | 50 mg daily           |

# SGLT2i

| Trial                                                 | Primary outcome                                                                                                           | Results                                                                                                                                                                                                                                         | Rec |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>DELIVER</b><br>Dapagliflozin<br>EF > 40%           | Composite: <ul style="list-style-type: none"><li>Worsening heart failure</li><li>Cardiovascular death</li></ul>           | Primary outcome: <ul style="list-style-type: none"><li>Dapagliflozin group: 512 of 3131 (16.4%) patients</li><li>Placebo group: 610 of 3132 (19.5%) patients</li></ul> Hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.92; P<0.001. | 2a  |
| <b>EMPEROR-PRESERVED</b><br>Empagliflozin<br>EF > 40% | Composite: <ul style="list-style-type: none"><li>Cardiovascular death</li><li>Hospitalization for heart failure</li></ul> | Primary outcome: <ul style="list-style-type: none"><li>Empagliflozin group: 415 of 2997 patients (13.8%)</li><li>Placebo group: 511 of 2991 patients (17.1%)</li></ul> Hazard ratio, 0.79; 95% confidence interval [CI], 0.69 to 0.90; P<0.001. |     |

# ARNIs

| Trial                                                 | Primary outcome                                                                                                       | Results                                                                                                                                                                                | Rec |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>PARAGON-HF</b><br>Sacubitril/valsartan<br>EF > 45% | Composite: <ul style="list-style-type: none"><li>• Total HF hospitalizations</li><li>• Cardiovascular death</li></ul> | Primary outcome: <ul style="list-style-type: none"><li>• Sacubitril/valsartan group: 894 events</li><li>• Valsartan group: 1009 events</li></ul> Hazard ratio, 0.87; 95% CI: 0.75-1.01 | 2b  |



# ARBs

| Trial                                             | Primary outcome                                                                                 | Results                                                                                                                                                       | Rec |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>CHARM-PRESERVED</b><br>Candesartan<br>EF > 40% | Composite: <ul style="list-style-type: none"><li>• Hospitalization</li><li>• CV death</li></ul> | Primary outcome: <ul style="list-style-type: none"><li>• Candesartan: 333 events</li><li>• Placebo: 366 events</li></ul> Adjusted HR: 0.86; 95% CI: 0.74-1.00 | 2b  |

# MRAs

| Trial                                       | Primary outcome                                                                                                                                     | Results                                                                                                                                                                      | Rec |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>TOPCAT</b><br>Spironolactone<br>EF > 45% | Composite: <ul style="list-style-type: none"><li>• Death from CV causes</li><li>• Aborted cardiac arrest</li><li>• Hospitalization for HF</li></ul> | Primary outcome: <ul style="list-style-type: none"><li>• Spironolactone group: 320 events</li><li>• Placebo group: 351 events</li></ul> Hazard ratio 0.89; 95% CI 0.77–1.04. | 2b  |

# TOPCAT

- Hard to interpret because results looked very different depending on geographic location
- Patients from Russia and Georgia had very low event rates and many had no detectable drug levels, raising concerns for non-adherence
- In contrast, patients from the Americas had higher event rates and clear drug exposure, and this group did show a significant benefit

Table 4. Summary of Trial Outcomes by Treatment Arm and Region

| Outcome         | Americas (n=1767)                                        |                      |                              | Russia/Georgia (n=1678)                                  |                    |                             | $P$ , Treatment-by-Region Interaction |  |
|-----------------|----------------------------------------------------------|----------------------|------------------------------|----------------------------------------------------------|--------------------|-----------------------------|---------------------------------------|--|
|                 | No. (%) With Event<br>[Incidence Rate per 100 patient-y] |                      | HR<br>(95% CI)<br>$P$ Value  | No. (%) With Event<br>[Incidence Rate per 100 patient-y] |                    | HR<br>(95% CI)<br>$P$ Value |                                       |  |
|                 | Spironolactone<br>(n=886)                                | Placebo<br>(n=881)   |                              | Spironolactone<br>(N=836)                                | Placebo<br>(N=842) |                             |                                       |  |
| Primary outcome | 242 (27.3)<br>[10.4]                                     | 280 (31.8)<br>[12.6] | 0.82<br>(0.69–0.98)<br>0.026 | 78 (9.3)<br>[2.5]                                        | 71 (8.4)<br>[2.3]  | 1.10<br>(0.79–1.51)<br>0.58 | <0.001<br>0.12                        |  |

Pitt B, Pfeffer MA, Assmann SF, et al; TOPCAT Investigators. Spironolactone for Heart Failure with Preserved Ejection Fraction. *N Engl J Med*. 2014; 370(15):1383–1392.

Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. *Circulation*. 2015;131(1):34–42. doi:10.1161/circulationaha.114.013255

# Assessment Question #3

JD is a 67-year-old female with a past medical history of obesity, HLD, T2DM and HTN. She presents to clinic with increased SOB and mild lower extremity edema. Initial labs show BP of 142/87 mmHg, NT-proBNP of 2,895, GFR of 72 mL/min, A1c 8.4%, potassium WNL, and EF of 67%. HFpEF is diagnosed.

Her current medications include: losartan 25 mg daily, atorvastatin 20mg daily and metformin 1000 mg twice daily. Which of the following would be the most appropriate therapeutic change for HFpEF management?

- A. Start pioglitazone 15 mg once daily
- B. Start empagliflozin 10 mg once daily
- C. Stop losartan and change to lisinopril 20 mg once daily
- D. Start metoprolol succinate 25 mg once daily

# HFpEF Outline

---

Background

---

GDMT Recommendations

---

**Updated or Emerging Literature**

# Non-steroidal Mineralocorticoid Receptor Antagonist

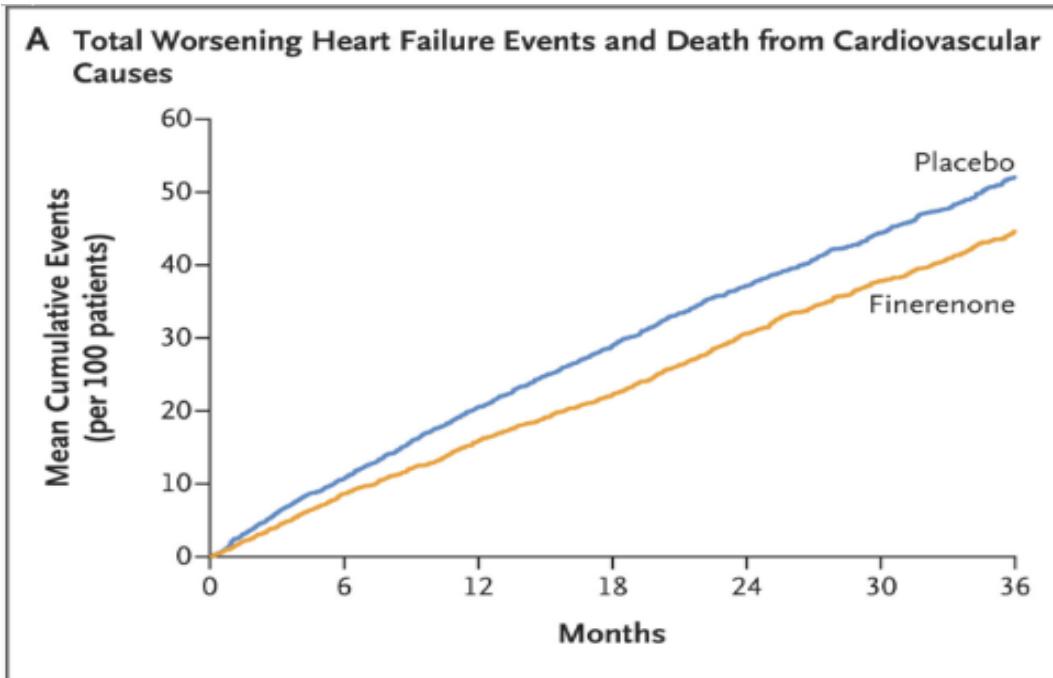
# Finerenone vs Spironolactone

|                                 | <b>Spironolactone *</b>                                                                                     | <b>Finerenone</b>                                                                                                                 |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <b>Mechanism of action</b>      | Competitive antagonist of mineralocorticoid receptor; preferentially acts in kidney<br><br><b>Steroidal</b> | Selective, high-affinity antagonist of mineralocorticoid receptor; balanced heart/kidney distribution<br><br><b>Non-steroidal</b> |
| <b>Hormonal adverse effects</b> | Gynecomastia<br>Menstrual irregularity<br>Impotence                                                         | None                                                                                                                              |
| <b>Class effects</b>            |                                                                                                             | Hyperkalemia<br>Hypotension<br>Renal dysfunction<br>Electrolyte imbalances                                                        |

\* FDA approved for the management of HTN

# Finerenone – Renal Dosing

| Renal adjustments                                                                                                                | Initial Dose                                        |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| eGFR > 60 mL/min                                                                                                                 | 20 mg once daily<br>Target dose of 40 mg once daily |
| eGFR > 25 < 60 mL/min                                                                                                            | 10 mg once daily<br>Target dose of 20 mg once daily |
| eGFR < 25 mL/min                                                                                                                 | Use not recommended                                 |
| Maintenance dose is determined by serum potassium & eGFR measured 4 weeks after initiation of therapy or after a dose adjustment |                                                     |
| Continue to monitor serum potassium and eGFR periodically during therapy and adjust dose as needed.                              |                                                     |


# Finerenone – Potassium Dosing

| Current serum potassium | Current finerenone dose                                                         |                                                                                                                                     |                               |
|-------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                         | 10 mg once daily                                                                | 20 mg once daily                                                                                                                    | 40 mg once daily              |
| <5 mEq/L                | Increase to 20 mg once daily.                                                   | Maintain 20 mg once daily if eGFR <60 mL/minute/1.73 m <sup>2</sup> at initiation. Otherwise increase the dose to 40 mg once daily. | Maintain 40 mg once daily.    |
| ≥5 to <5.5 mEq/L        | Continue 10 mg once daily.                                                      | Continue 20 mg once daily.                                                                                                          | Continue 40 mg once daily     |
| ≥5.5 to <6 mEq/L        | Interrupt therapy. Restart at 10 mg once daily when serum potassium <5.5 mEq/L. | Decrease to 10 mg once daily.                                                                                                       | Decrease to 20 mg once daily. |
| ≥6 mEq/L                | Interrupt therapy. Restart at 10 mg once daily when serum potassium <5.5 mEq/L. |                                                                                                                                     |                               |

# Finerenone in Heart Failure with mildly reduced or preserved ejection fraction (FINEARTS-HF)

|                           |                                                                                                                                                                                                                            |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Trial design</b>       | International, double-blind trial that occurred across 37 countries and 654 sites                                                                                                                                          |
| <b>Objective</b>          | Compared finerenone against placebo in HFmrEF & HFpEF patients                                                                                                                                                             |
| <b>Inclusion criteria</b> | <ul style="list-style-type: none"><li>Age &gt; 40 years old</li><li>Symptomatic heart failure</li><li>LVEF &gt; 40%</li><li>Evidence of structural heart disease</li><li>Elevated levels of natriuretic peptides</li></ul> |
| <b>Primary outcome</b>    | <p>Composite</p> <ul style="list-style-type: none"><li>Total worsening HF events (First or recurrent unplanned hospitalizations or urgent care visit)</li><li>Heart failure deaths from cardiovascular causes</li></ul>    |
| <b>Methods</b>            | Participants were randomized 1:1 to finerenone (20 mg or 40 mg daily, titrated based on kidney function) or matching placebo in addition to their other therapies<br>N=6001                                                |

# Finerenone in Heart Failure with mildly reduced or preserved ejection fraction (FINEARTS-HF)



# Finerenone in Heart Failure with mildly reduced or preserved ejection fraction (FINEARTS-HF)

|                   |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Results</b>    | <p><b>Primary outcome:</b></p> <ul style="list-style-type: none"><li>Finerenone: 624 events</li><li>Placebo: 1283 events</li><li>Rate ratio: 0.84; 95% CI, 0.74-0.95; P=0.007.</li></ul>                                                     | <p><b>Total worsening heart failure events:</b></p> <ul style="list-style-type: none"><li>Finerenone: 842 events</li><li>Placebo: 1024 events</li><li>Rate ratio: 0.82; 95% CI 0.71–0.94; P=0.006.</li></ul> <p><b>Cardiovascular death:</b></p> <ul style="list-style-type: none"><li>Finerenone: 242 death</li><li>Placebo: 260 deaths</li><li>Hazard ratio: 0.93, 95% CI 0.78–1.11.</li></ul> |
| <b>Conclusion</b> | In patients with heart failure and mildly reduced or preserved ejection fraction, finerenone resulted in a significantly lower rate of a composite of total worsening heart failure events and death from cardiovascular causes than placebo |                                                                                                                                                                                                                                                                                                                                                                                                  |



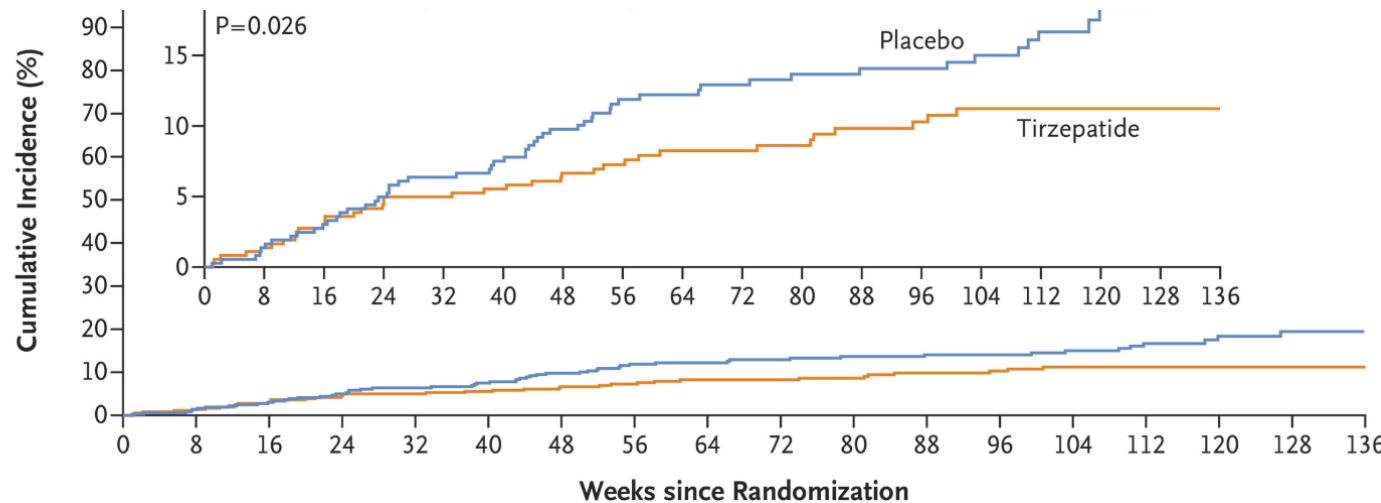
| Differences       | TOPCAT<br>(Spironolactone)                                                               | FINEARTS-HF<br>(Finerenone)                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Participants:     | LVEF > 45%<br>Adults > 50                                                                | LVEF > 40%<br>Adults > 40                                                                                                                                           |
| Average EF        | The mean baseline ejection fraction:<br>• 58%                                            | The mean baseline ejection fraction:<br>• 53%                                                                                                                       |
| Primary outcomes: | Composite:<br>• Cardiovascular death<br>• HF hospitalization<br>• Aborted cardiac arrest | Composite:<br>• Total worsening HF events (First or recurrent unplanned hospitalizations or urgent care visit)<br>• Heart failure deaths from cardiovascular causes |

# Assessment Question #4

Which of the following factors complicates a direct comparison of the results of the TOPCAT vs FINEARTS-HF trial:

- A. TOPCAT had a stricter primary endpoint
- B. TOPCAT enrolled patients with a higher average EF and in both trials the therapeutic benefit decreased as EF increased.
- C. TOPCAT had significant regional variability, with much better results in the Americas where the protocol was appropriately followed.
- D. All of the above

# GLP-1 Receptor Agonists


- Semaglutide
- Tirzepatide

# Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity (SUMMIT)

|                           |                                                                                                                                                                                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Trial design</b>       | International, randomized, double-blind placebo-controlled trial                                                                                                                             |
| <b>Objective</b>          | Compared tirzepatide titrated up to a dose of 15 mg weekly against placebo in patients with preserved ejection fraction                                                                      |
| <b>Inclusion criteria</b> | <ul style="list-style-type: none"><li>• Age &gt; 40 years old</li><li>• LVEF &gt; 50%</li><li>• BMI &gt; 30 kg/m<sup>2</sup></li><li>• Functional and symptomatic requirements</li></ul>     |
| <b>Primary outcomes</b>   | Composite: <ul style="list-style-type: none"><li>• Adjudicated death from CV causes</li><li>• Worsening HF events</li></ul><br>The change in baseline to 52 weeks in KCCQ-CSS                |
| <b>Methods</b>            | Patients with an EF of at least 50% and a BMI of at least 30 were assigned 1:1 to receive tirzepatide (up to 15 mg subcutaneously once per week) or placebo for at least 52 weeks.<br>N= 731 |

# Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity (SUMMIT)

Composite of death from CV causes or a worsening HF event



## No. at Risk

|             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| Placebo     | 367 | 361 | 349 | 339 | 332 | 328 | 318 | 268 | 259 | 240 | 219 | 215 | 195 | 165 | 145 | 94  | 73 | 45 |
| Tirzepatide | 364 | 359 | 349 | 344 | 340 | 338 | 333 | 284 | 275 | 251 | 228 | 220 | 196 | 167 | 146 | 105 | 82 | 46 |

# Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity (SUMMIT)

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Results</b>    | <p><b>Primary outcome:</b></p> <ul style="list-style-type: none"><li>Tirzepatide: 36 patients</li><li>Placebo: 56 patients</li><li>Hazard ratio: 0.62; 95% CI: 0.41-0.95; P=0.026</li></ul> <p><b>Worsening heart failure events:</b></p> <ul style="list-style-type: none"><li>Tirzepatide: 29 events</li><li>Placebo: 52 events</li><li>Hazard ratio: 0.54; 95% CI: 0.34–0.85</li></ul> <p><b>Cardiovascular death:</b></p> <ul style="list-style-type: none"><li>Tirzepatide: 8 events</li><li>Placebo: 5 events</li><li>Hazard ratio: 1.58; 95% CI: 0.52–4.83</li></ul> | <p><b>Second primary outcome:</b> Quality of life (KCCQ-CSS change at 52 weeks):</p> <ul style="list-style-type: none"><li>Tirzepatide: +19.5 points</li><li>Placebo: +12.7 points</li><li>Difference: +6.9; 95% CI: 3.3–10.6, p&lt;0.001</li></ul> |
| <b>Conclusion</b> | In patients with heart failure with preserved ejection fraction and obesity tirzepatide led to a lower risk of a composite of death from cardiovascular causes or worsening heart failure than placebo and improved health status.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |

# GLP1-RA – Titration Schedules

## Tirzepatide (Zepbound ®)

| Week              | Dose                |
|-------------------|---------------------|
| Week 1 – Week 4   | 2.5 mg once weekly  |
| Week 5 – Week 8   | 5 mg once weekly    |
| Week 9 – Week 12  | 7.5 mg once weekly  |
| Week 13 – Week 16 | 10 mg once weekly   |
| Week 16 – Week 20 | 12.5 mg once weekly |
| Week 20 – Week 24 | 15 mg once weekly   |

# GLP1-RA – Titration Schedules

## Semaglutide (Wegovy ®)

| Week              | Dose                |
|-------------------|---------------------|
| Week 1 – Week 4   | 0.25 mg once weekly |
| Week 5 – Week 8   | 0.5 mg once weekly  |
| Week 9 – Week 12  | 1 mg once weekly    |
| Week 13 – Week 16 | 1.7 mg once weekly  |
| Week 17 and on    | 2.4 mg once weekly  |

## Semaglutide (Ozempic ®)

| Week              | Dose                |
|-------------------|---------------------|
| Week 1 – Week 4   | 0.25 mg once weekly |
| Week 5 – Week 8   | 0.5 mg once weekly  |
| Week 9 – Week 12  | 1 mg once weekly    |
| Week 13 – Week 16 | 2 mg once weekly    |

# Place in Therapy

## Finerenone in HFrEF

- Patients who have experienced hormonal adverse effects with spironolactone
- Individuals with concerns related to orthostasis
- Patients for whom cost is not a significant factor

## GLP-1 Receptor Agonists in HFrEF

- Improve symptoms and enhance physical function in patients with HFrEF
- Optimize glycemic management for individuals with type 2 diabetes & promote weight loss
- HFrEF and not HFrEF
- Overall decrease in multiple risk factors

# References

1. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.
2. 2024 ACC Expert Consensus Decision Pathway for Treatment of Heart Failure With Reduced Ejection Fraction. A Report of the American College of Cardiology Solution Set Oversight Committee.
3. Allen LA, Thompson JS, Stehlík J. STRONG-HF Evidence for Proactive, Patient-Centered Prescribing. *JAMA Cardiol.* 2024;9(2):103-104. doi:10.1001/jamacardio.2023.4565
4. American College of Cardiology. Focus on Heart Failure | HFpEF: Where We Stand in 2025. Published June 1, 2025.
5. American Diabetes Association Professional Practice Committee for Diabetes. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2026. *Diabetes Care.* 2026;49(Suppl 1):S216-S245.
6. American Heart Association. 2025 Heart Disease and Stroke Statistics Update Fact Sheet. Accessed July 8, 2025.
7. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. *N Engl J Med.* 2021;385(16):1451-1461.
8. Cannata A, McDonagh TA. Heart failure with preserved ejection fraction. *N Engl J Med.* 2025;392:173-184.
9. Chronic Heart Failure – Healio.com. Accessed July 23, 2025. <https://www.healio.com/cardiology/learn-the-heart/cardiology-review/topic-reviews/systolic-congestive-heart-failure>
10. Filippatos G, Butler J, Lam CSP, et al. Finerenone in heart failure and mildly reduced or preserved ejection fraction. *N Engl J Med.* 2023;389(9):803-814.
11. Gallagher R, Lutik ML, Jaarsma T. Social support and self-care in heart failure. *J Cardiovasc Nurs.* 2011;26(6):439-445.
12. Image courtesy of: Nephron. Diuretics Therapeutic Roles of Thiazides and Loop Diuretics I.
13. Innovate Healthcare. Cardiovascular Business. Annual heart failure costs in the US could surpass \$70B by 2030. January 25, 2022. Accessed July 8, 2025.
14. Jones DW, Ferdinand KC, Taler SJ, et al. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. *Circulation.* 2025. doi:10.1161/CIR.000000000001356
15. Kittleson MM, Panjwani GS, Amancherla K, et al. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction. *J Am Coll Cardiol.* Published April 19, 2023.
16. Kosiborod M, Burkhoff D, Brown-Frandsen K, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. *N Engl J Med.* 2023;389(26):2451-2464.
17. Lexicomp. Dapagliflozin: Drug Information. Accessed January 21, 2026. <https://online.lexi.com>

# References

18. Lexicomp. Empagliflozin: Drug Information. Accessed January 21, 2026. <https://online.lexi.com>
19. Lexicomp. Finerenone: Drug Information. Accessed January 21, 2026. <https://online.lexi.com>
20. Lexicomp. Spironolactone: Drug Information. Accessed January 21, 2026. <https://online.lexi.com>
21. Lexicomp. Tirzepatide: Drug Information. Accessed January 21, 2026. <https://online.lexi.com>
22. Malgie J, Wilde MI, Clephas PRD, et al. Contemporary guideline-directed medical therapy in de novo, chronic, and worsening heart failure patients: First data from the TITRATE-HF study. *Eur J Heart Fail*. 2024;26(7):1549-1560. doi:10.1002/ejhf.3267
23. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. *N Engl J Med*. 2014;371(11):993-1004. doi:10.1056/NEJMoa1409077
24. Mebazaa A, Davison B, Chioncel O, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF). *Lancet*. 2022;400(10367):1938-1952. doi:10.1016/S0140-6736(22)02076-1
25. Mukherjee D. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. American College of Cardiology. Published November 12, 2017.
26. Packer M, Zile MR, Kramer CM, et al; SUMMIT Trial Study Group. Tirzepatide for heart failure with preserved ejection fraction and obesity. *N Engl J Med*. 2024.
27. Pathophysiology of heart failure with reduced ejection fraction: Hemodynamic alterations and remodeling – UpToDate. Accessed January 10, 2026.
28. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in chronic heart failure: the CHARM-Overall programme. *Lancet*. 2003;362(9386):759-766.
29. Pitt B, Pfeffer MA, Assmann SF, et al; TOPCAT Investigators. Spironolactone for heart failure with preserved ejection fraction. *N Engl J Med*. 2014;370(15):1383-1392.
30. Redfield MM, Borlaug BA. Heart failure with preserved ejection fraction: a review. *JAMA*. 2023;329(10):827-838.
31. Savarese G, Kishi T, Vardeny O, et al. Heart Failure Drug Treatment—Inertia, Titration, and Discontinuation: A Multinational Observational Study (EVOLUTION HF). *J Am Coll Cardiol HF*. 2023;11(1):1-14.
32. Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. *N Engl J Med*. 2019;381(17):1609-1620.
33. Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. *N Engl J Med*. 2022;387(12):1089-1098.
34. Solomon SD, McMurray JJV, Vaduganathan M, et al. Finerenone in heart failure with mildly reduced or preserved ejection fraction. *N Engl J Med*. 2024;391(16):1475-1485. doi:10.1056/NEJMoa2407107
35. Tromp J, Ouwerkerk W, van Veldhuisen DJ, et al. A Systematic Review and Network Meta-Analysis of Pharmacological Treatment of Heart Failure With Reduced Ejection Fraction. *JACC Heart Fail*. 2022;10(2):73-84.
36. Understanding Congestive Heart Failure Symptoms – Dr Raghu. Accessed July 8, 2025.
37. Wintrich J, Kindermann I, Ukena C, et al. Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. *Clin Res Cardiol*. 2020;109(9):1079-1098.

# Questions?

02/24/2025

Collin Kruczak, PharmD  
PGY2 Ambulatory Care Pharmacy Resident  
Atrium Health

Joseph Loredo, PharmD  
PGY2 Ambulatory Care Pharmacy Resident  
Aurora Health Care Metro, Inc.

Email:  
[Joseph.Loredo@aah.org](mailto:Joseph.Loredo@aah.org)

[Collin.Kruczek@advocatehealth.org](mailto:Collin.Kruczek@advocatehealth.org)