

From Ischemia to Intervention: Antiplatelets in Action

Abigail Cooper, PharmD, PGY-1 Acute Care Pharmacy Resident, Carolinas Medical Center 12.04.2025

Disclosures

The planner(s) and speaker(s) have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Learning Objectives

At the end of this session, learners should be able to:

- Compare different antiplatelet agents and how they exert their effects in the context of cerebrovascular events
- 2. Summarize key recommendations from major guidelines regarding antiplatelet use in TIA and CVA
- 3. Outline evidence from literature to support clinical decision-making in neuroendovascular antiplatelet management
- 4. Recall appropriate safety and monitoring parameters for antiplatelet therapy

Abbreviation Key

ACS: Acute coronary syndromes

ADP: Adenosine Diphosphate

AIS: Acute ischemic stroke

ASA: Acetylsalicylic Acid

AVM: Arteriovenous malformation

CAD: Coronary artery disease

cAMP: cyclic Adenosine monophosphate

CAST: Chinese acute stroke trial

COX1: Cyclooxygenase-1

CrCl: Creatinine clearance

CVA: Cerebrovascular accident

DAPT: Dual antiplatelet therapy

DDIs: Drug-drug interactions

GPIIb/IIIa: Glycoprotein IIb/IIIa

HF: Heart failure

ICAD: Intracranial atherosclerotic disease

ICH: Intracranial hemorrhage

IST: Ischemic stroke trial

Abbreviation Key

LD: Loading dose

LOF: Loss of function

MCA: Middle cerebral artery

MD: Maintenance dose

MI: Myocardial infarction

mRS: modified Rankin Scale

NIHSS: National Institutes of Health

Stroke Scale

NNH: Number needed to harm

NNT: Number needed to treat

NSAID: Non-steroidal anti-inflammatory drug

P&T: Pharmacy and Therapeutics

PDE: Phosphodiesterase

PO: Oral

RCT: Randomized control trial

TIA: Transient ischemic attack

TTP: Thrombotic thrombocytopenic

purpura

TxA2: Thromboxane A2

UFH: Unfractionated heparin

vWF: von Willebrand factor

Platelets in Clot Formation

Role of Platelets

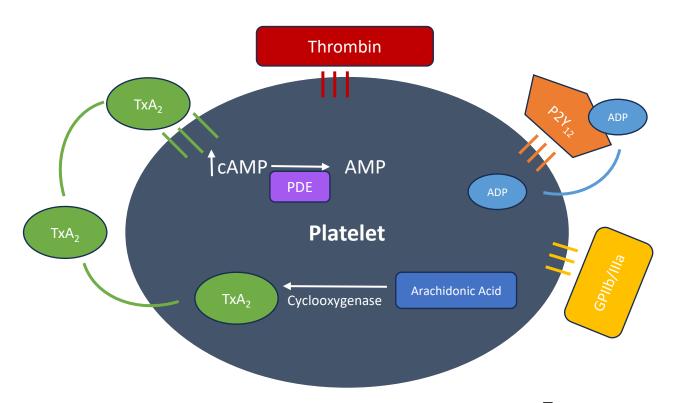
Clot Formation: When a blood vessel is injured, platelets are the first responders

Adhere

To the damaged vessel wall

Activate

 By changing shape and releasing chemical signals


Aggregate

 By clumping together to form a temporary plug

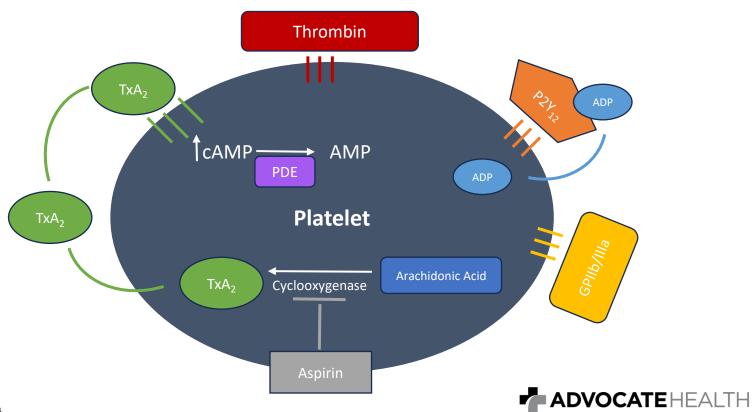
Leads to triggering of the **coagulation cascade**, starting formation of a stable fibrin clot that seals the wound

Overview of Platelets

Impact of Platelets in Stroke

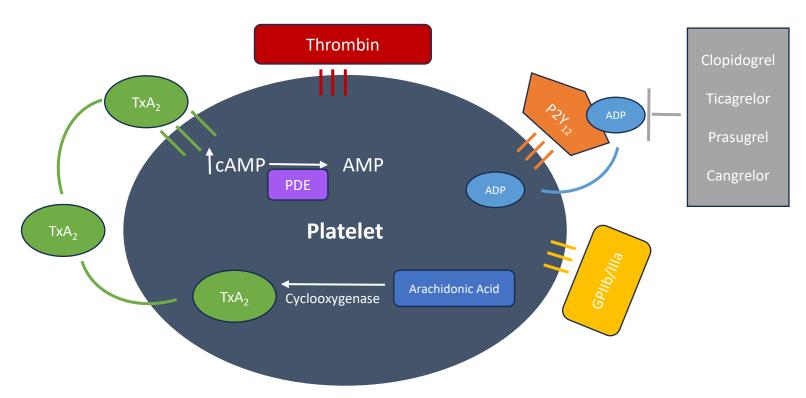
Platelets are essential for stopping bleeding by forming clots

 Excessive platelet activity or high platelet counts can lead to abnormal clot formation inside blood vessels


• If a clot forms in or travels to the brain's arteries, it can block blood flow, causing an acute ischemic stroke (AIS)

Antiplatelet Medications

Aspirin



Aspirin Overview

	Aspirin
Mechanism of Action	 Nonsteroidal anti-inflammatory drug (NSAID) Irreversible inactivation of cyclooxygenase 1 (COX1) Inhibits conversion of arachidonic acid to thromboxane A2 (TXA2)
Dosing	 LD: 160 – 325 mg PO MD: 75 – 100 mg PO
PK/PD	 Onset: ~1 hour Duration: ~7 days
Clinical Pearls	Increased bleeding riskFetal toxicityRenal impairment

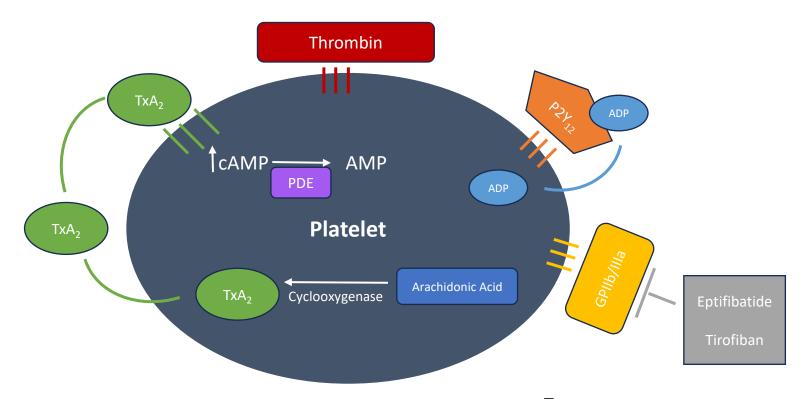
P2Y₁₂ Inhibitors

Oral P2Y₁₂ Inhibitors Overview

	Clopidogrel	Ticagrelor	Prasugrel	
Mechanism of Action	Irreversible inhibition of P2Y12 receptor	Reversible inhibition of P2Y12 receptor	Irreversible inhibition of P2Y12 receptor	
Dosing	LD: 300-600 mg PO x 1MD: 75 mg PO once daily	LD: 180 mg PO x 1MD: 90 mg PO twice daily	LD: 60 mg PO x1MD: 10 mg PO daily	
PK/PD	Onset: 2 hoursTime to steady state: 3-7 daysDuration: 5 days	 Onset: 2 hours Time to steady state: 2-3 days Duration: 5 days 	Onset: 1 hourTime to steady state: 3-5 daysDuration: 5-9 days	
Consideration s	CYP2C19 metabolismTTP	 Decreased effect with ASA doses > 100 mg Risk of dyspnea 	 Not recommended in patients ≥ 75 years of age Increased bleeding risk Dose reduce for < 60 kg 	

Oral P2Y₁₂ Inhibitors Overview

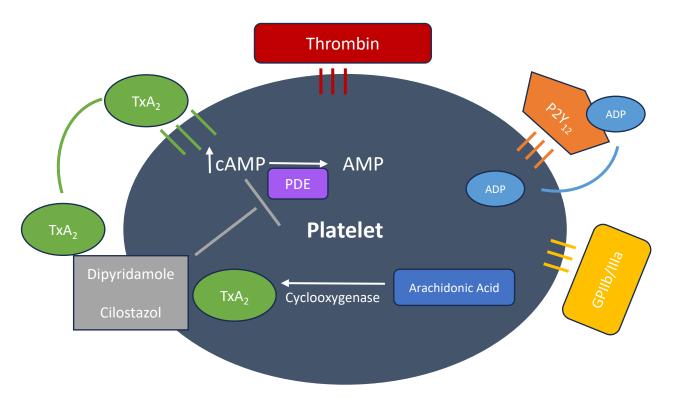
	Clopidogrel	Ticagrelor	Prasugrel
Mechanism of Action	Irreversible inhibition of P2Y12 receptor	Reversible inhibition of P2Y12 receptor	
Dosing	 LD: 300-600 mg PO x 1 MD: 75 mg PO once daily 	LD: 180 mg PO x 1MD: 90 mg PO twice daily	Contraindicated in
PK/PD	Onset: 2 hoursTime to steady state: 3-7 daysDuration: 5 days	 Onset: 2 hours Time to steady state: 2-3 days Duration: 5 days 	Contraindicated in stroke/TIA
Consideration s	CYP2C19 metabolismTTP	 Decreased effect with ASA doses > 100 mg Risk of dyspnea 	



Intravenous P2Y₁₂ Inhibitor Overview

	Cangrelor
Mechanism of Action	Reversible inhibition of P2Y12 receptor
Dosing	 Bolus: 15–30 μg/kg IV MD: 2–4 μg/kg/minute IV
PK/PD	Onset: 2 minutesDuration: 1 hour
Clinical Pearls	 Not used in chronic platelet inhibition Transition to oral therapy

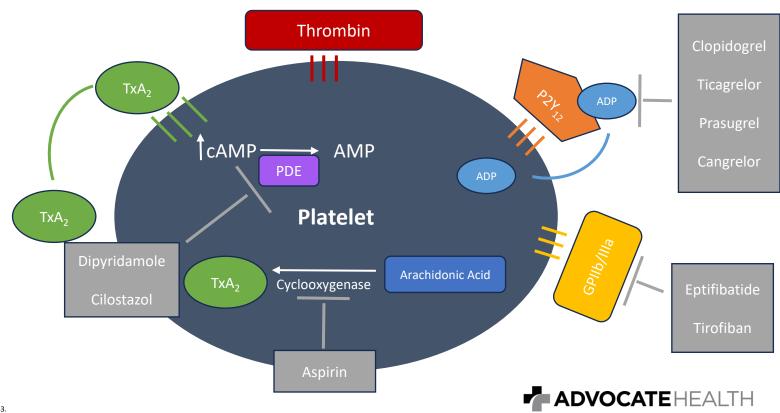
GPIIb/IIIa Inhibitors



GPIIb/IIIa Inhibitors Overview

	Eptifibatide	Tirofiban		
Mechanism of Action	Competitive inhibition of von Wildebrand Factor (vWF) and fibrinogen			
Dosing	Bolus: 180–200 mcg/kg IV MD: 0.5–2 mcg/kg/min IV	Bolus: 25 mcg/kg IV MD: 0.10-0.15 mcg/kg/min IV		
PK/PD	Onset: Immediate Half-life: ~2.5 hours	Onset: Within 10 minutes Half-life: ~ 2 hours		
Clinical Pearls	 Increased risk of hemorrhage Renal adjustment for CrCl < 50 ml/min: ~ 50% dose reduction 	 Increased risk of hemorrhage Renal adjustment for CrCl < 60 ml/min: ~ 50% dose reduction 		

Phosphodiesterase Inhibitors



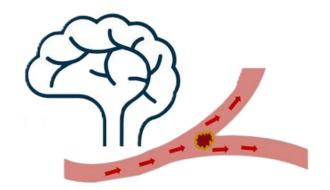
Phosphodiesterase Inhibitors Overview

	Dipyridamole	Cilostazol		
Mechanism of Action	Inhibition of phosphodiesterase 3Decreases cAMP concentration			
Dosing	75-100 mg PO four times dailyOften combined w/ ASA	100 mg PO twice daily		
PK/PD	Onset: 75 minutesDuration: 10 hours	Onset: 3 hoursDuration: 96 hours		
Clinical Pearls	 Caution in CAD or hypotension Hepatic metabolism DDIs: Adenosine, Cholinesterase inhibitors 	 Contraindicated in HF Risk of tachyarrhythmias DDIs: reduce dose w/ strong CYP3A4 and CYP2C19 inhibitors 		

Antiplatelet Medication Summary

Assessment Question #1

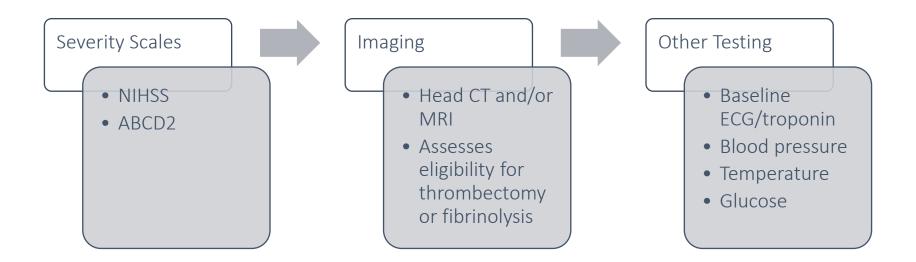
A 78-year-old female presents to the ED with sudden onset of leftsided weakness and facial droop lasting 15 minutes. CT negative for hemorrhage. MRI confirms small infarct in right MCA territory. The team is considering dual antiplatelet therapy for secondary stroke prevention, which of the following if initiated in this patient exhibits reversible platelet inhibition at the P2Y12 receptor?


- A. Clopidogrel
- B. Aspirin
- C. Ticagrelor
- D. Cilostazol

Ischemic Cerebrovascular Syndromes

TIA

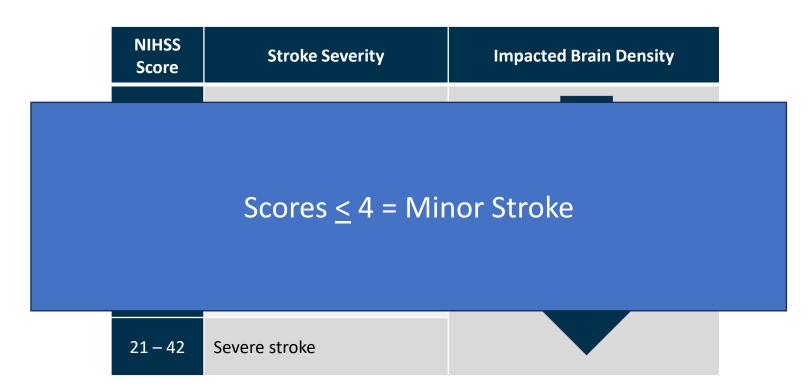
VS



- Temporary neurologic dysfunction
- Short duration
- No infarct on imaging

- Permanent neurologic deficit
- Duration > 24 hours
- Requires urgent medical attention

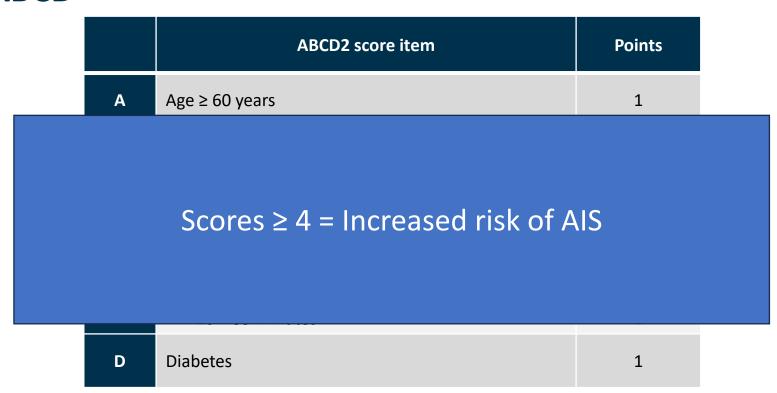
Assessment of Injury



NIHSS

NIHSS Score	Stroke Severity	Impacted Brain Density
0	No stroke	
1 – 4	Minor stroke	
5 – 15	Moderate stroke	
16 - 20	Moderate to severe stroke	
21 – 42	Severe stroke	

NIHSS



ABCD²

	ABCD2 score item	Points
Α	Age ≥ 60 years	1
В	Blood pressure ≥ 140/90 mm Hg	1
С	Clinical features:Unilateral weakness orSpeech impairment without weakness	2 1
D	Duration of Symptoms: • ≥ 60 minutes • 10 – 59 minutes	2 1
D	Diabetes	1

ABCD²

Secondary Prevention

Why it matters

- Risk of recurrence for AIS is ~25%
- Mortality rate for patients with recurrent stroke ~50%

Goals of secondary prevention

- Reduce risk of future TIA/CVA
- Address modifiable risk factors

Strategies

- Antiplatelet therapy
- Blood pressure control
- Lipid-lowering therapy
- Lifestyle management

Literature

Landmark Trials

	IST (1997) CAST (1997) N = 19,435 N = 21,106		SOCRATES (2016) N = 13,199	
Population	AIS within 48 hours	AIS within 48 hours	TIA or minor stroke not treated w/ fibrinolysis within 24 hours	
Intervention	ASA vs. SubQ Heparin	ASA vs. Placebo	ASA vs. Ticagrelor	
Outcomes	Death at 14 days / death or dependency at 6 months	All-cause mortality during admission	Composite outcome of stroke, MI, o death within 90 days	
Results	ASA > UFH	ASA > placebo	No significant differences	
Conclusion	 ASA modestly reduced recurrent ischemic stroke and death UFH increased bleeding risk without overall mortality benefit 	 ASA reduced early death and recurrent ischemic stroke Slight increase in minor bleeding, but net clinical benefit favored aspirin 	 Ticagrelor was not superior to ASA Slight reduction in AIS with ticagrelor Trend toward benefit in large artery atherosclerosis Similar bleeding rates between groups 	

	CHANCE (2013) N = 5,170		POINT (2018) N = 4,881		THALES (2020) <i>N</i> = 11,016	
Population	Adults \geq 40 with NIHSS \leq 3 or ABCD ² \geq 4 and symptom onset with 24 hours		Adults \geq 18 with NIHSS \leq 3 or ABCD ² \geq 4 and enrolled \leq 12 hours from AIS/TIA		Adults \geq 40 with NIHSS \leq 5 or ABCD ² \geq 6 and symptom onset with 24 hours	
	Clopidogrel + ASA x 21 days	ASA Monotherapy	Clopidogrel + ASA x 90 days	ASA Monotherapy	Ticagrelor + ASA x 30 days	ASA Monotherapy
Intervention	Clopidogrel 300 mg x1, then 75 mg daily - PLUS - ASA 75-300 mg x1 then 75 mg daily	ASA 75-300mg x1 then 75mg daily plus placebo	Clopidogrel 600 mg x1, then 75 mg daily - PLUS - ASA 50-325 mg daily	ASA 50-325 mg daily plus placebo	Ticagrelor 180 mg x1, then 90 mg BID - PLUS - ASA 300-325 mg x1, then 75-100 mg daily	ASA 300-325 mg x1, then 75-100 mg daily plus placebo
Outcomes	 Incidence of stroke within 90 days Bleeding events 		Stroke, MI, death within 90 daysBleeding event		Stroke or death vSevere bleeding	vithin 30 days
Results	 Stroke: 11.7% (ASA) vs. 8.2% (DAPT) [P<0.001; NNT=29] Bleeding: 1.6% (ASA) vs. 2.3% (DAPT) [P=0.09] 		 Stroke, MI, death: 5.0% (DAPT) vs. 6.5% (ASA) [P = 0.02; NNT=6] Bleeding: 0.9% (DAPT) vs. 0.4% (ASA) [P=0.02; NNH=200] 		 Stroke or death: 5.5% (DAPT) vs. 6.6% (ASA) [P=0.02; NNT=90] Bleeding: 0.5% (DAPT) vs. 0.1% (ASA) [P=0.001; NNH=250] 	
Conclusion	DAPT = More effective than ASA alone		DAPT = More effect	ive; higher bleed risk	DAPT = More effecti	ive; higher bleed risk

	CHANCE (2013) N = 5,170		POINT (2018) N = 4,881		THALES (2020) N = 11,016	
Population	Adults \geq 40 with NIHSS \leq 3 or ABCD ² \geq 4 and symptom onset with 24 hours		Adults \geq 18 with NIHSS \leq 3 or ABCD ² \geq 4 and enrolled \leq 12 hours from AIS/TIA		Adults \geq 40 with NIHSS \leq 5 or ABCD ² \geq 6 and symptom onset with 24 hours	
	Clopidogrel + ASA x 21 days	ASA Monotherapy	Clopidogrel + ASA x 90 days	ASA Monotherapy	Ticagrelor + ASA x 30 days	ASA Monotherapy
Intervention	Clopidogrel 300 mg x1, then 75 mg daily - PLUS - ASA 75-300 mg x1 then 75 mg daily	ASA 75-300mg x1 then 75mg daily plus placebo	Clopidogrel 600 mg x1, then 75 mg daily - PLUS - ASA 50-325 mg daily	ASA 50-325 mg daily plus placebo	Ticagrelor 180 mg x1, then 90 mg BID - PLUS - ASA 300-325 mg x1, then 75-100 mg daily	ASA 300-325 mg x1, then 75-100 mg daily plus placebo
Outcomes	Incidence of stroke within 90 daysBleeding events		Stroke, MI, death within 90 daysBleeding event		Stroke or death vSevere bleeding	within 30 days
Results	 Stroke: 11.7% (ASA) vs. 8.2% (DAPT) [P<0.001; NNT=29] Bleeding: 1.6% (ASA) vs. 2.3% (DAPT) [P=0.09] 		 Stroke, MI, death: 5.0% (DAPT) vs. 6.5% (ASA) [P = 0.02; NNT=6] Bleeding: 0.9% (DAPT) vs. 0.4% (ASA) [P=0.02; NNH=200] 		(ASA) [P=0.02; N	DAPT) vs. 0.1% (ASA)
Conclusion	DAPT = More effective than ASA alone		DAPT = More effect	ive; higher bleed risk	DAPT = More effect	ive; higher bleed risk

	CHANCE (2013) N = 5,170		POINT (2018) N = 4,881		THALES (2020) N = 11,016	
Population	Adults \geq 40 with NIHSS \leq 3 or ABCD ² \geq 4 and symptom onset with 24 hours		Adults \geq 18 with NIHSS \leq 3 or ABCD ² \geq 4 and enrolled \leq 12 hours from AIS/TIA		Adults \geq 40 with NIHSS \leq 5 or ABCD ² \geq 6 and symptom onset with 24 hours	
	Clopidogrel + ASA x 21 days	ASA Monotherapy	Clopidogrel + ASA x 90 days	ASA Monotherapy	Ticagrelor + ASA x 30 days	ASA Monotherapy
Intervention	Clopidogrel 300 mg x1, then 75 mg daily - PLUS - ASA 75-300 mg x1 then 75 mg daily	ASA 75-300mg x1 then 75mg daily plus placebo	Clopidogrel 600 mg x1, then 75 mg daily - PLUS - ASA 50-325 mg daily	ASA 50-325 mg daily plus placebo	Ticagrelor 180 mg x1, then 90 mg BID - PLUS - ASA 300-325 mg x1, then 75-100 mg daily	ASA 300-325 mg x1, then 75-100 mg daily plus placebo
Outcomes	Incidence of stroke within 90 daysBleeding events		Stroke, MI, deathBleeding event	within 90 days	Stroke or death vSevere bleeding	vithin 30 days
Results	 Stroke: 11.7% (ASA) vs. 8.2% (DAPT) [P<0.001; NNT=29] Bleeding: 1.6% (ASA) vs. 2.3% (DAPT) [P=0.09] 		(ASA) [P = 0.02; N	OAPT) vs. 0.4% (ASA)	(ASA) [P=0.02; NI	DAPT) vs. 0.1% (ASA)
Conclusion	DAPT = More effective than ASA alone		DAPT = More effect	ive; higher bleed risk	DAPT = More effecti	ive; higher bleed risk

	CHANCE (2013) <i>N</i> = 5,170		POINT (2018) <i>N = 4,881</i>		THALES (2020) N = 11,016	
Population	Adults \geq 40 with NIHSS \leq 3 or ABCD ² \geq 4 and symptom onset with 24 hours		Adults ≥ 18 with NIHSS ≤ 3 or ABCD ² ≥ 4 and enrolled ≤ 12 hours from AIS/TIA		Adults \geq 40 with NIHSS \leq 5 or ABCD ² \geq 6 and symptom onset with 24 hours	
Intervention	Clopidogrel + ASA x 21 days	ASA Monotherapy	Clopidogrel + ASA x 90 days	ASA Monotherapy	Ticagrelor + ASA x 30 days	ASA Monotherapy
	Clopidogrel 300 mg x1, then 75 mg daily - PLUS - ASA 75-300 mg x1 then 75 mg daily	ASA 75-300mg x1 then 75mg daily plus placebo	Clopidogrel 600 mg x1, then 75 mg daily - PLUS - ASA 50-325 mg daily	ASA 50-325 mg daily plus placebo	Ticagrelor 180 mg x1, then 90 mg BID - PLUS - ASA 300-325 mg x1, then 75-100 mg daily	ASA 300-325 mg x1, then 75-100 mg daily plus placebo
Outcomes	Incidence of stroke within 90 daysBleeding events		Stroke, MI, death within 90 daysBleeding event		Stroke or death within 30 daysSevere bleeding	
Results	 Stroke: 11.7% (ASA) vs. 8.2% (DAPT) [P<0.001; NNT=29] Bleeding: 1.6% (ASA) vs. 2.3% (DAPT) [P=0.09] 		 Stroke, MI, death: 5.0% (DAPT) vs. 6.5% (ASA) [P = 0.02; NNT=6] Bleeding: 0.9% (DAPT) vs. 0.4% (ASA) [P=0.02; NNH=200] 		 Stroke or death: 5.5% (DAPT) vs. 6.6% (ASA) [P=0.02; NNT=90] Bleeding: 0.5% (DAPT) vs. 0.1% (ASA) [P=0.001; NNH=250] 	
Conclusion	DAPT = More effective than ASA alone		DAPT = More effective; higher bleed risk		DAPT = More effective; higher bleed risk	

Takeaways

CHANCE

- Supported starting DAPT (clopidogrel + ASA) within 24 hours of symptom onset
- Reduced 90-day stroke incidence without increasing bleeding rates

POINT

- Validated CHANCE findings
- Led to guideline updates recommending 21-day
 DAPT for patients with minor stroke (NIHSS < 3) or high-risk TIA (ABCD2 > 4)

THALES

- Provided alternative to clopidogrel-based DAPT
- Added ticagrelor as option in guidelines for early secondary prevention

Meta-Analysis (2021): Short-term DAPT (≤30 days) with ASA + clopidogrel showed a favorable risk-benefit profile

Guideline Recommendations

American Heart Association/American Stroke Association 2021

Secondary Prevention

• Antiplatelet therapy recommended for non-cardioembolic CVA or TIA for reduction of recurrence

Monotherapy

- First-line: ASA 50-325mg daily
 - Alternative: Clopidogrel 75 mg
 - Less common: ASA-dipyridamole 20/200 mg BID

DAPT

- <u>Indication</u>:
 - Minor strokes (NIHSS ≤ 3)
 - High-risk TIA (ABCD2 Score ≥ 4)
- Timing: Early (within 12-24 hours)
- <u>Duration</u>: Continued for 21-90 days

Assessment Question #2

A 65-year-old male presents with a non-cardioembolic ischemic stroke. Initial NIHSS is 3. His symptoms began 6 hours ago and have mostly resolved. MRI confirms a small infarct in the right MCA territory. He has no history of atrial fibrillation or bleeding disorders. Following a loading dose, the neurology team asks for a recommendation for dual antiplatelet therapy. What is an appropriate recommendation for DAPT for this patient?

- A. Ticagrelor 90 mg twice daily + aspirin 325 mg daily for 21 days
- B. Clopidogrel 75 mg daily + aspirin 81 mg daily for 21 days
- C. Clopidogrel 75 mg + Ticagrelor 90 mg twice daily for 21 days
- D. Ticagrelor 90 mg twice daily + aspirin 81 mg daily for 7 days

Neuroendovascular Procedures

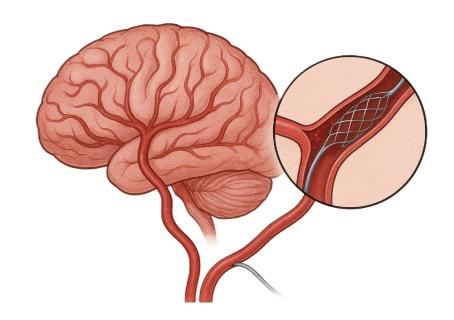
Overview

What are neuroendovascular procedures?

- Minimally invasive techniques performed via blood vessels to treat neurological conditions
- Commonly used for stroke, aneurysms, AVMs, and vascular malformations

Types of procedures

- Mechanical Thrombectomy (for AIS)
- Intracranial stenting (failed thrombectomy)
- Stent-Assisted Coiling (for aneurysms)
- Flow Diversion (for complex aneurysms)
- Embolization (for AVMs, tumors)


Considerations

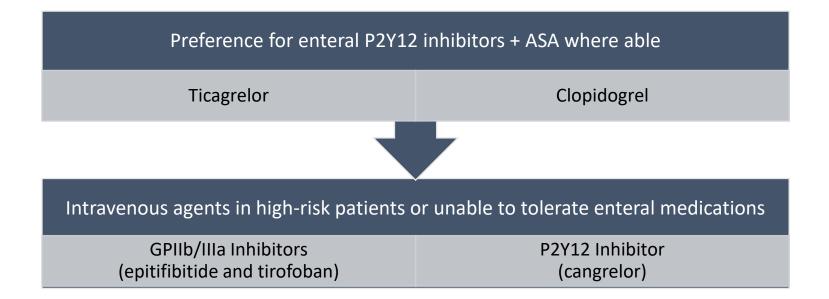
- High risk clot vs bleeding
- IV vs PO therapy

Intracranial Stenting

- Rescue treatment to restore blood flow in a severely narrowed or blocked artery
- Commonly used when thrombectomy fails
- Mechanism:
 - Stent placed and permanently positioned to keep vessel open
 - Improves blood flow through blocked artery

Cerebral Aneurysm

Stent-Assisted Coiling	Flow Diversion
Aneurysm Coil Stent	Aneurysm Flow Diverter
Used primarily for wide-necked aneurysms	Used primarily for large, complex aneurysms
 Stent placed across neck of aneurysm Coils inserted into aneurysm to initiate thrombosis Aneurysm "clots off" and shrinks over time 	 Stent placed across neck of aneurysm Blood flow directed away from aneurysm


The Role of Antiplatelet Therapy

Stents can trigger platelet aggregation and thrombosis

Antiplatelet therapy can prevent thrombotic complications during and post-procedure

Antiplatelet Medications

Guideline Recommendations

Society of Neurointerventional Surgery (2023)

DAPT		
Indication	Duration	
Brain aneurysm treatment who have had cardiac stents placed within the last 6–12 months	Recommended during treatment	
Following neurointerventional treatment for ICAD	Continued for 3 months	
Symptomatic ICAD following secondary stroke treatment	Continued for 3 months	
Undergoing coronary artery stenting	Initiate DAPT prior and continue for 3 months	

American Journal of Neuroradiology

2020 Expert Consensus:

- Periprocedural dual IV therapy: ASA + glycoprotein IIb/IIIa inhibitor (PO ASA = alternative where IV is unavailable)
- Transition to oral aspirin + P2Y12 inhibitor within 24 hours post-procedure

Emerging Therapy: Cangrelor

Cortez et al. (2020)

Design	Retrospective multicenter study		
	Ischemic Group (IG)	Aneurysm Group (AG)	
Intervention	Mechanical thrombectomy, stenting, angioplasty	Flow-diverters, stent-assisted coiling	
	Cangrelor Protocol: Loading dose (15–30 μg/kg), maintenance infusion (2–4 μg/kg/min), followed by transition to DAPT		
Outcomes	 Periprocedural symptomatic complications (e.g., hemorrhage, thromboembolic events) Functional outcomes (mRS 0-2) 		
IG: 10% had symptomatic complications; 48% had favorable outcomes at discharge AG: 13% had complications; favorable outcomes at discharge were 56% (ruptured) and 88% (unruptured)			
Conclusion	Cangrelor appears to be a safe and effective alternative for immediate antiplatelet therapy		

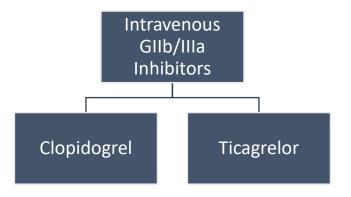
Cheddad El Aouni et al. (2020)

Design	Single center, retrospective review (n = 112); Patients: 76 (Ticagrelor), 21 (Eptifibatide), 15 (Cangrelor)
Intervention	Ticagrelor (preprocedural) vs. Eptifibatide (during procedure) vs. Cangrelor (during procedure)
Outcomes	 Bleeding Thromboembolic events, silent infarcts, aneurysm occlusion, functional outcome mRS
Results	 Symptomatic events (N=8): 4% (Ticagrelor) vs. 14% (Eptifibatide) vs. 13% (Cangrelor) [P=0.106] Symptomatic events: AIS, TIA, ICH, Death, and change in mRS at 3-6 months
Conclusion	Cangrelor appears feasible and useful particularly when stenting is unplanned; larger randomized studies are needed

Cangrelor at Advocate

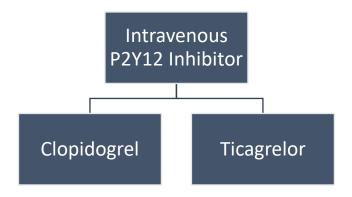
Indications for Use*

- Adult neurointerventional procedures unable to take enteral P2Y12
- Patients with ruptured cerebral aneurysms requiring flow diverting stents not previously on enteral P2Y12
- Patients with acute stroke requiring unplanned stenting
- Patients with planned neurointerventional procedures found to have inadequate response to enteral P2Y12



^{*}Not FDA approved (off-label use)

Transitioning from IV to PO Antiplatelet Therapy


Transition Strategies – GIIb/IIIa Inhibitors

Initiate loading dose after GIIb/IIIa infusion discontinuation:			
Clopidogrel	600 mg		
Ticagrelor	180 mg		

Transition Strategies – Cangrelor

Oral P2Y12 Inhibitor	When to initiate	Dose
Clopidogrel	After discontinuation of cangrelor infusion	600 mg
Ticagrelor	At the start of cangrelor infusion up to immediately after discontinuation *Note: Infusion overlap of up to 4 hours has been reported*	180 mg

Transition Strategies – Cangrelor

Intravenous P2Y12 Inhibitor

Oral P2Y12

Clopid

Ticagi

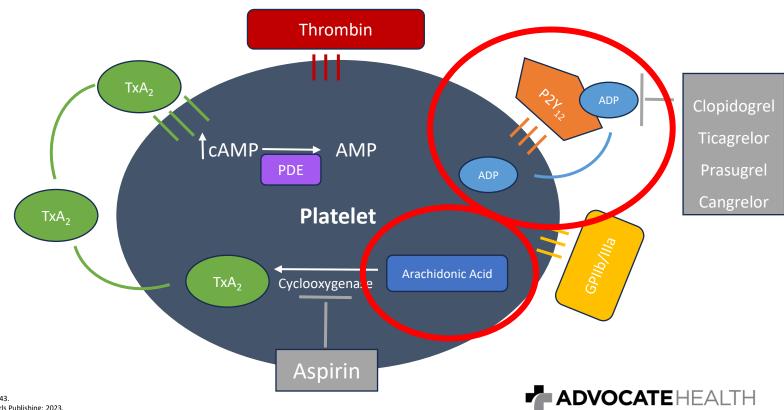
<u>Clinical Pearl</u>: Clopidogrel **should not** be administered during cangrelor infusion because cangrelor competitively inhibits the P2Y12 receptor and prevents clopidogrel from binding and being metabolized into its active form

Dose

600 mg

180 mg

Monitoring


Platelet Mapping

Thromboelastography with Platelet Mapping (TEG/PM)

- Measures the maximum amplitude (MA)
 - Thrombin
 - Fibrin
 - ADP
 - Arachidonic acid
- Percent inhibition calculated

TEG-PM

Yun SH et al. *Biomed Res Int*. 2016:9060143.

Kashyap R, Sharma S. StatPearls. StatPearls Publishing; 2023.
Smeds et al. J Vasc Surg. 2022;75(5):1687–1694.e4.

Verify Now

Point-of-care test

• Results within minutes

Evaluates platelet reactivity to antiplatelet drugs

Aspirin

 Aspirin reaction units (ARU) > 550 = poor response

P2Y12i

 P2Y12 reaction units (PRU) > 208 = poor response Can use results to assess percent inhibition

Clopidogrel Considerations

Clopidogrel is a prodrug requiring activation by the CYP2C19 enzyme

Genetic polymorphisms in CYP2C19 significantly affect clopidogrel's efficacy

FDA Boxed Warning: Reduced effectiveness in poor metabolizers

Historically, highest prevalence in eastern asian populations

Genetic Polymorphisms

Metabolizer Phenotype	Genotype	US Population	Response to <u>clopidogrel</u>
Ultrarapid	2 increased function alleles (*17/*17)	1–5%	Normal or increased antiplatelet response
Rapid	1 increased function and 1 normal function allele (*1/*17)	20-30%	Normal or increased antiplatelet response
Normal	Absence of any tested increased function or LOF alleles (*1/*1)	35-50%	Normal antiplatelet response
Intermediate	1 LOF allele (*1/*2, *1/3, *2/17, and *3/*17)	20-30%	Reduced antiplatelet response
Poor	2 LOF alleles (*2/*2, *2/3, *3/*3)	1-5%	Significantly reduced antiplatelet response

CHANCE-2 (2021)

 Population N=6,412 Adults ≥ 40 with NIHSS ≤ 3 or ABCD2 ≥ 4 and symptom onset within 24 hours CYP2C19 LOF alleles (identified via point-of-care testing) 			
	Ticagrelor + ASA		Clopidogrel + ASA
Intervention	Ticagrelor: 180 mg x1, followed by 90 mg BID x 90 days ASA: 75–300 mg x1, followed by 75 mg daily x 21 days	VS	Clopidogrel group: 300 mg x1, followed by 75 mg daily x 90 days ASA: 75–300 mg x1, followed by 75 mg daily x 21 days
Outcomes	 Efficacy: Stroke (ischemic or hemorrhagic) within 90 days Safety: moderate-to-severe bleeding event 		
Results	 Lower rate of stroke with ticagrelor: 6.0% (ticagrelor) vs 7.6% (clopidogrel) → p = 0.008 No significant difference in major bleeding events 		
Conclusion	Ticagrelor + ASA is more effective than clopidogrel + ASA in reducing stroke risk in patients with CYP2C19 LOF alleles		

Assessment Question #3

A 58-year-old male presents with AIS and undergoes stent-assisted coiling for an intracranial aneurysm. Post-procedure, DAPT (clopidogrel + ASA) is initiated. The patient's CYP2C19 genotype shows he is a poor metabolizer (CYP2C19 *2/*2). What is the most appropriate pharmacologic intervention for optimizing this patient's antiplatelet therapy?

- A. Add cilostazol to increase platelet inhibition
- B. Increase the dose of clopidogrel to 150 mg daily
- C. Discontinue antiplatelet therapy and start anticoagulation instead
- D. Discontinue clopidogrel and start ticagrelor

Summary

There are many mechanisms by which medications can inhibit platelet activity

Antiplatelet therapy is recommended for noncardioembolic CVA or TIA for reduction of recurrence

New evidence supports the use of antiplatelet medications for high-risk neurovascular procedures

Genetic testing and platelet mapping help individualize antiplatelet therapy

References

- Bangad A, Abbasi M, de Havenon A. Secondary Ischemic Stroke Prevention. Neurotherapeutics. 2023;20(3):721-731.
- Bayer Aspirin (aspirin) [package insert]. Bayer HealthCare LLC; Whippany, NJ. Revised January 2023.
- Burrows AM, Cloft HJ, Kallmes DF, Flow diversion for posterior circulation aneurysms. J Neurosura, 2019:131(6):1690–1694.
- CAST (Chinese Acute Stroke Trial) Collaborative Group. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. Lancet. 1997;349(9066):1641-1649.
- Chen H-S, Cui Y, Zhou Z-H, et al. Dual antiplatelet therapy vs alteplase for patients with minor nondisabling acute ischemic stroke: the ARAMIS randomized clinical trial. JAMA. 2023;329(24):2135–2144.
- Cortez GM, Monteiro A, Sourour N, et al. The use of cangrelor in neurovascular interventions: a multicenter experience. Neuroradiology. 2021;63:925–934.
- del Zoppo GJ. The role of platelets in ischemic stroke. Neurology. 1998;51(3 Suppl 3):S9-S14.
- Gesele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol. 2011;72(4):634-646.
- Hackam DG, Spence JD. Antiplatelet therapy in ischemic stroke and transient ischemic attack: an overview of major trials and meta-analyses. Stroke. 2019;50(3):773–778.
- Heart and Stroke Foundation of Canada. Canadian Stroke Best Practice Recommendations: Secondary Prevention of Stroke Antiplatelet Therapy in Ischemic Stroke and TIA. Canadian Stroke Best Practices. Accessed October 16, 2025.
- Iqbal AM, Lopez RA, Hai O. Antiplatelet Medications. [Updated 2022 Nov 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-.
- Johnston SC, Amarenco P, Albers GW, et al. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med. 2016;375(1):35–43.
- Johnston SC, Amarenco P, Denison H, et al. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med. 2020;383(3):207–217.
- Johnston SC, Easton JD, Farrant M, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215-225.
- Khaku AS, Tadi P, Cerebrovascular Disease, [Updated 2023 Aug 7], In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing: 2025 Jan.
- Klein MD, Williams AK, Lee CR, Stouffer GA. Clinical utility of CYP2C19 genotyping to guide antiplatelet therapy in patients with an acute coronary syndrome or undergoing percutaneous coronary intervention. Arterioscler Thromb Vasc Biol. 2019;39(4):647-652.
- Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke. 2021;52(7):e364–e467.
- Koski R. Kennedy B. Comparative Review of Oral P2Y12 Inhibitors. P.T. 2018;43(6):352-357.
- Lee DH, Arat A, Morsi H, Shaltoni H, Harris JR, Mawad ME. Dual antiplatelet therapy monitoring for neurointerventional procedures using a point-of-care platelet function test: a single-center experience. AJNR Am J Neuroradiol. 2008;29(7):1389–1394.
- Majumdar M, Lella S, Waller D, et al. Usage of thromboelastography with platelet mapping assay to predict graft thrombosis in lower extremity revascularization. J Vasc Surg. 2022;75(3):e53—e54.
- Milnerowicz M, Desilles JP, Pop R, et al. Cangrelor versus GPIIb/IIIa inhibitors as adjunctive therapy in endovascular treatment of large vessel occlusion stroke. J NeuroIntervent Surg. Published online April 30, 2025.
- Ospel JM, Brouwer P, Dorn F, et al. Antiplatelet management for stent-assisted coiling and flow diversion of ruptured intracranial aneurysms: a DELPHI consensus statement. AJNR Am J Neuroradiol. Published online September 17, 2020.
- Panuganti KK, Tadi P, Lui F, Transient Ischemic Attack, [Updated 2023 Jul 17]. In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing: 2025 Jan.
- Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–e418.
- Scridon A. Platelets and Their Role in Hemostasis and Thrombosis—From Physiology to Pathophysiology and Therapeutic Implications. Int J Mol Sci. 2022;23(21):12772. Published 2022 Oct 23.
- Schirmer CM, Bulsara KR, Al-Mufti F, et al. Antiplatelets and antithrombotics in neurointerventional procedures: quideline update. J Neurointerv Surg. 2023;15(11):1155–1163.
- Shulga O, Bornstein N. Antiplatelets in secondary stroke prevention. Front Neurol. 2011;2:36. Published 2011 Jul 4.
- The International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet. 1997;349(9065):1569-1581.
- Trifan G, Gorelick PB, Testai FD. Efficacy and safety of using dual versus monotherapy antiplatelet agents in secondary stroke prevention: systematic review and meta-analysis of randomized controlled clinical trials. Circulation.
 2021:143(25):2441–2453.
- Tummala R, Rai MP. Glycoprotein Ilb/Illa Inhibitors. [Updated 2023 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-
- Wang Y, Meng X, Wang A, et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med. 2021;385(27):2520-2530.
- Yun SH, Sim EH, Goh RY, Park JI, Han JY. Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int. 2016;2016:9060143.

Questions?

Abigail Cooper, PharmDPGY-1 Acute Care Pharmacy Resident, Carolinas Medical Center

abigail.cooper@advocatehealth.org