

Overview of Biologics in the Treatment of Asthma and COPD

November 13, 2025

Taylor Eustice, PharmD

PGY1 Specialty Pharmacy Resident

Atrium Health Carolina's Medical Center

Disclosures

The planners and speaker have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Abbreviation Key

- AD: Atopic dermatitis
- BP: Bullous pemphigoid
- CAT: COPD assessment test
- **COPD**: Chronic obstructive pulmonary disease
- **CRSwNP**: Chronic rhinosinusitis with nasal polyps
- CSU: Chronic spontaneous urticaria
- **EGPA**: Eosinophilic granulomatosis with polyangiitis
- **EoE**: Eosinophilic esophagitis
- FeNO: Fractional exhaled nitric oxide
- FEV: Forced expiratory volume
- **FVC**: Forced vital capacity
- GINA: Global Initiative for Asthma
- **GOLD**: Global Initiative for Chronic Obstructive Lung Disease
- **HES**: Hypereosinophilic syndrome

- ICS: Inhaled corticosteroid
- **IgE**: Immunoglobulin E
- IL: Interleukin
- IV: Intravenous
- LABA: Long-acting beta agonist
- LAMA: Long-acting muscarinic antagonist
- mMRC: Modified Medical Research Council dyspnea score
- OCS: Oral corticosteroid
- PN: Prurigo nodularis
- QOL: Quality of life
- SABA: Short-acting beta agonist
- **SQ**: Subcutaneous
- TSLP: Thymic stromal lymphopoietin
- **UTI**: Urinary tract infection

Learning Objectives

At the end of this session, learners should be able to:

1

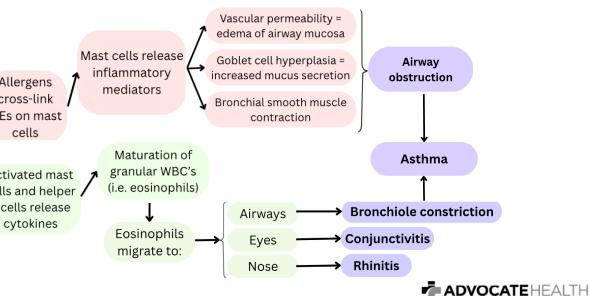
RECOGNIZE THE PATHOPHYSIOLOGY OF ASTHMA AND COPD IN RELATION TO BIOLOGIC THERAPY. 2

OUTLINE CURRENT GUIDELINE RECOMMENDATIONS FOR BIOLOGIC USE IN ASTHMA AND COPD. 3

IDENTIFY BIOLOGIC TARGETS AND KEY CLINICAL DATA SUPPORTING THEIR USE. 4

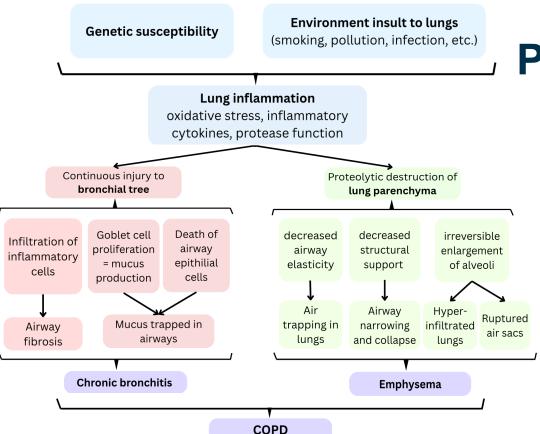
COMPARE AVAILABLE BIOLOGIC THERAPIES BASED ON MECHANISM, INDICATION, AND EFFICACY.

SELECT APPROPRIATE BIOLOGIC TREATMENT STRATEGIES BASED ON PATIENT CASE SCENARIOS.

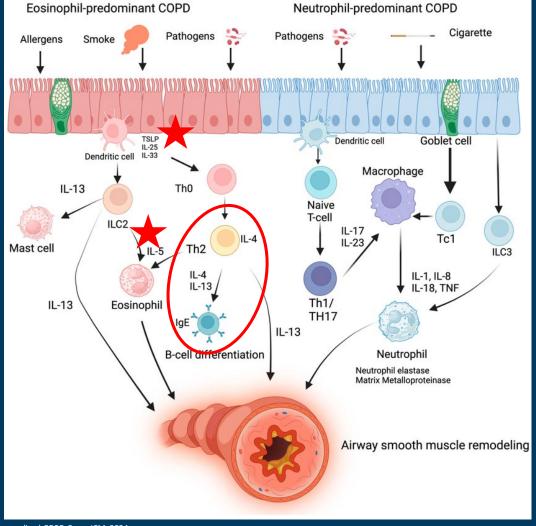

Objective 1:

Recognize the pathophysiology of asthma and COPD in relation to biologic therapy.

Genetic factors **Environmental factors** Atopy: predisposition to allergic hypersensitivity in airways First exposure to triggers sensitizes helper T cells Stimulation of B-cells produce IgE, which bind to mast cell surfaces Activated Helper T cells and IgE-sensitized mast cells Mast cells release lline the airways inflammatory Allergens mediators Early cross-link response IgEs on mast (0-2 hours) Second cells exposure to Maturation of triggers Late granular WBC's Activated mast response cells and helper (3-4 hours) T cells release cytokines Eosinophils migrate to:


Asthma Pathophysiology

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Non-type 2 inflammation Type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 TSLP **IL-25 IL-33** CXCL8 TGF-β GM-CSF Th2 cell IL-13 IL-23 GATA3 ILC2 GATA3 Th17 IL-4, 5, and 13 cell CRTH2 cell cell IL-13 IFN-γ CRTH2 **GM-CSF** TNF-α IL-8 Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil CXCR2 Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy


Asthma Inflammation

COPD Inflammation

Asthma vs. COPD

FEATURE	ASTHMA COPD		
Onset	Often in childhood or early adulthood Usually after age 40		
Cause	Allergens, genetics, environmental triggers	Smoking, air pollution, occupational exposure	
Inflammation Type	Eosinophilic, Type 2-high	Neutrophilic, Type 2-low	
Reversibility of Airflow Limitation	Reversible with bronchodilators	Irreversible or partially reversible	
Symptoms	Episodic wheezing, chest tightness, cough, dyspnea	Persistent cough, sputum production, dyspnea	
Response to ICS	Good response	Limited response	
Biomarkers	↑ Eosinophils, ↑ IgE, ↑ FeNO	↑ Neutrophils, normal IgE, ↓ FeNO	
Imaging	Normal or hyperinflation Emphysema, airway thicken		

Knowledge check #1

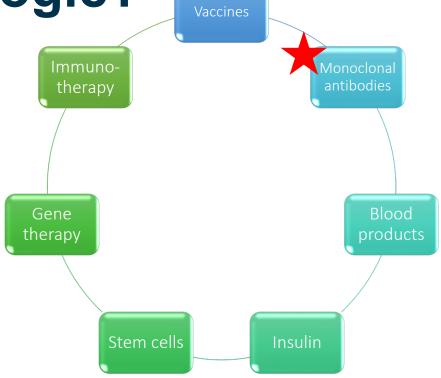
TJ, a 58-year-old man presents with shortness of breath and a chronic productive cough that has worsened over the past several years. He reports a 40-pack-year smoking history. On physical exam, you note prolonged expiratory phase and decreased breath sounds. Pulmonary function testing shows an FEV $_1$ /FVC ratio of 0.60 that is not fully reversible after bronchodilator administration.

Which diagnosis best fits this patient's presentation?

- A. Asthma
- B. COPD

Objective 2:

Outline current guideline recommendations for biologic use in asthma and COPD.

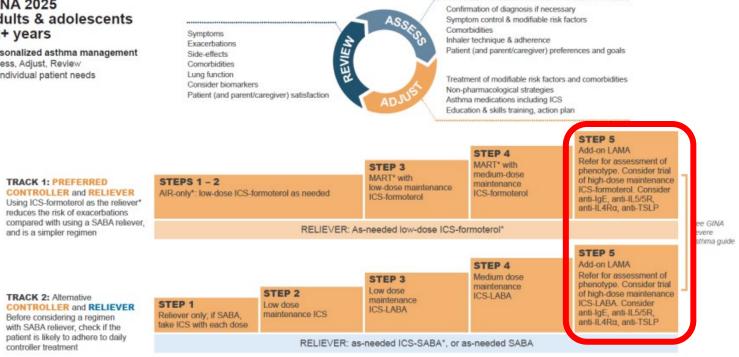

What is a biologic?

Biologics are medications derived from living organism cells

- **OHuman**
- OAnimal
- ∘ Microorganisms

Concerns

- Usually injectable only
- ○Cost \$\$\$\$
- ∘Biosimilars
- Specialty pharmacies only



GINA Guidelines

GINA 2025 Adults & adolescents 12+ years

Personalized asthma management Assess, Adjust, Review for individual patient needs

Non-pharmacologic strategies include smoking cessation, physical activity, pulmonary rehabilitation, weight reduction, vaccinations (see text for more) Allergen immunotherapy, e.g. HDM SLIT: consider for patients with clinically relevant sensitization and not well-controlled (but stable) asthma See text for further information and safety advice Additional controller options (e.g., add-on LAMA at Step 4, add-on LTRA) have less evidence for efficacy or for safety than Tracks 1 or 2 (see text). Maintenance OCS should only ever be used as last resort.

Severe and Uncontrolled Asthma

Severe asthma

- Require GINA level 5 medications for control or remain uncontrolled
 - High dose ICS with LABA ± LAMA

Uncontrolled asthma

- 2 or more exacerbations requiring OCS in last year
- Exacerbations requiring escalation of care
- Persistent FEV₁ <80% predicted

What is FEV₁ percent predicted?

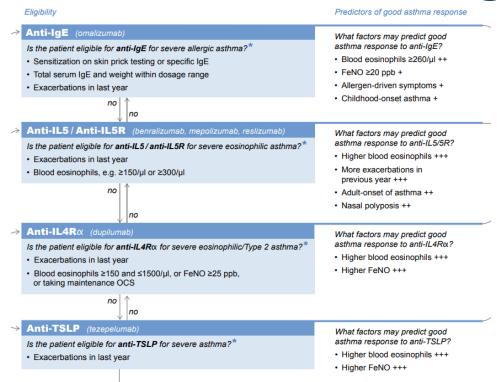
"Forced expiratory volume per 1 second"

Reversible with bronchodilator: increase in FEV₁ by 12% or 0.2 L

Goal: > 80%

Add-on Biologic Considerations

Phenotype/Endotype	Biomarkers	Labs	Biologic Targets
Type 2 Phenotype			
Allergic Asthma	IgE, IL-4, IL-5, and IL-13	HIGH IgE, FeNO positive allergy skin tests	IgE, TSLP
Eosinophilic Asthma	IL-4, IL-5, and IL-13	HIGH blood eosinophils, FeNO	IL-5, IL-5R, IL-4, TSLP
Type 2 Low Phenotype			
Neutrophilic Asthma	None identifiable	LOW eosinophils, and FeNO variable IgE	none
Paucigranulocytic Asthma	None identifiable	LOW eosinophils, and FeNO normal IgE	none



Add-on Biologic Considerations

Phenotype/Endotype	Biomarkers	Labs	Biologic Targets	Biologics
Type 2 Phenotype				
Allergic Asthma	IgE, IL-4, IL-5, and IL-13	HIGH IgE, FeNO positive allergy skin tests	IgE, TSLP	Omalizumab (Xolair®) Tezepelumab-ekko (Tezspire®)
Eosinophilic Asthma	IL-4, IL-5, and IL-13	HIGH blood eosinophils, FeNO	IL-5, IL-5R, IL-4, TSLP	Mepolizumab (Nucala®) Benralizumab (Fasenra®) Reslizumab (Cinqair®) Dupilumab (Dupixent®) Tezepelumab-ekko (Tezspire®)
Type 2 Low Phenotype				
Neutrophilic Asthma	None identifiable	LOW eosinophils, and FeNO variable IgE	none	none
Paucigranulocytic Asthma	None identifiable	LOW eosinophils, and FeNO normal IgE	none	none

Asthma Guideline Biologic Use

Knowledge check #2

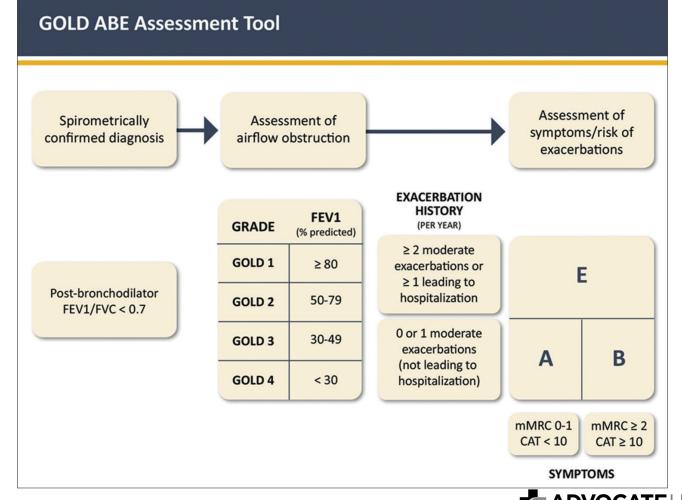
AB, an 11-year-old patient with a 5-year history of asthma presents for follow-up due to persistent symptoms despite being on high-dose ICS-formoterol maintenance therapy. The patient reports frequent nighttime awakenings and daily use of rescue inhalers. The provider now wants to consider biologic therapy.

Laboratory findings:

Total IgE: 150 IU/mL

Allergy skin testing: Negative Blood eosinophils: 320 cells/µL

FeNO: 32 ppb


Which asthma phenotype best fits this clinical presentation?

- A. Allergic asthma
- B. Eosinophilic asthma
- C. Type 2-low asthma
- D. Asthma-COPD overlap

GOLD Guidelines

Initial Pharmacological Treatment

≥ 2 moderate exacerbations or ≥ 1 leading to hospitalization **GROUP E**

LABA + LAMA*

consider LABA+LAMA+ICS* if blood eos ≥ 300

0 or 1 moderate exacerbations (not leading to hospital admission) **GROUP A**

A bronchodilator

mMRC 0-1, CAT < 10

GROUP B

LABA + LAMA*

 $mMRC \ge 2$, $CAT \ge 10$

*single inhaler therapy may be more convenient and effective than multiple inhalers Exacerbations refers to the number of exacerbations per year

GOLD Guideline Directed Biologic Use

Minimal guidance in 2025 report!

Anti IL-4/13 (dupilumab)

- COPD and chronic bronchitis
- 2 or more moderate or 1 severe exacerbations in the last year, despite triple therapy
- Eosinophils ≥ 300 cells/μL

Anti IL-5 (mepolizumab)

- 2 or more exacerbations in the last year
- Elevated eosinophils

Knowledge check #3

TJ, a 58-year-old man presents with COPD returns to clinic for a follow up after complaining of uncontrolled shortness of breath. He has had 2 exacerbations in the past year that required hospitalization and oral corticosteroids. He is currently on LABA-LAMA-ICS inhaled therapy. The physician has ordered labs to determine if TJ is a candidate for biologic treatment.

Laboratory findings:

Total IgE: 24 IU/mL

Blood eosinophils: 422 cells/µL

Is TJ a candidate for biologic treatment?

- A. Yes
- B. No
- C. Not enough information

Objective 3:

Identify biologic targets and key clinical data supporting their use.

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Non-type 2 inflammation Type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 **TSLP IL-25 IL-33** CXCL8 IL-6 TGF-β GM-CSF Th2 cell IL-13 IL-23 GATA3 ILC₂ GATA3 Th17 IL-4, 5, and 13 cell CRTH2 cell IL-13 IgE 4 IFN-γ CRTH2 **GM-CSF** TNF-α Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Omalizumab (Xolair®)

 Binds to free IgE and prevents it from binding to its receptor on mast cells and basophils

Omalizumab (Xolair®) - Anti IgE

Mechanism	 Binds to free IgE and prevents it from binding to its receptor on mast cells and basophils Reduces allergic inflammation and downregulates FceRI receptor expression on effector cells
Indications	 Moderate-to-severe persistent allergic asthma (≥6 years) With positive skin or in vitro reactivity to perennial aeroallergens Inadequately controlled with inhaled corticosteroids
Dosing	 75–600 mg SQ every 2–4 weeks Dose based on baseline serum IgE level and body weight
Pharmacokinetics	 Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~26 days
Warnings/Precautions	 Boxed Warning: Anaphylaxis Malignancy Serum sickness Helminth infections
Safety	Common (1-10%): Injection site reactions, headache, arthralgia, fatigue, dizziness Rare but serious: Anaphylaxis, vasculitis, cardiovascular and cerebrovascular events
Pearls	 Refrigerate room temperature max 2 days No routine lab monitoring needed False elevation in serum IgE

Omalizumab Dosing ≥ 12 Years

		Body Weight (lb/kg)			
Pre-treatment Serum IgE (IU/mL)	Dosing Frequency	66-132 lb (30-60 kg)	>132-154 lb (>60-70 kg)	>154-198 lb (>70-90 kg)	>198-330 lb (>90-150 kg)
		Dose (mg)			
≥30-100	Every 4 weeks	150	150	150	300
>100-200		300	300	300	225
>200-300		300	225	225	300
>300-400	Every 2 weeks	225	225	300	
>400-500		300	300	375	
>500-600		300	375	Inc. officient data to	
>600-700		375		insufficient data to	recommend a dose

[■] Subcutaneous doses to be administered every 4 weeks ■ Subcutaneous doses to be administered every 2 weeks

Omalizumab (Xolair®) - Anti IgE

Mechanism	 Binds to free IgE and prevents it from binding to its receptor on mast cells and basophils Reduces allergic inflammation and downregulates FceRI receptor expression on effector cells
Indications	 Moderate-to-severe persistent allergic asthma (≥6 years) With positive skin or in vitro reactivity to perennial aeroallergens Inadequately controlled with inhaled corticosteroids
Dosing	75–600 mg SQ every 2–4 weeks • Dose based on baseline serum IgE level and body weight
Pharmacokinetics	 Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~26 days
Warnings/Precautions	 Boxed Warning: Anaphylaxis Malignancy Serum sickness Helminth infections
Safety	Common (1-10%): Injection site reactions, headache, arthralgia, fatigue, dizziness Rare but serious: Anaphylaxis, vasculitis, cardiovascular and cerebrovascular events
Pearls	 Refrigerate room temperature max 2 days No routine lab monitoring needed False elevation in serum IgE

Xolair (omalizumab) [package insert]. South San Francisco, CA; Gentech USA, Inc; Revised 02/2024.

Soler M., et al. (2001)

Evaluate the efficacy, safety and corticosteroid-sparing effect of omalizumab administered subcutaneously in **allergic asthma**.

Intervention:

- Omalizumab or placebo SQ every 2 or 4 weeks for 7 months
 - Based on body weight and serum IgE levels
- Steroid phases: tapered to lowest effective dose after 16 weeks

Population:

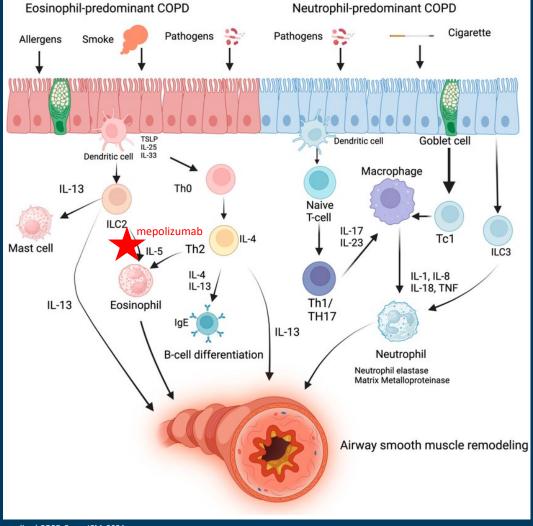
- Mean age 40
- Baseline FEV₁ pred 70%
- Baseline IgE 21-814 IU/mL (avg 215)

Results:

- Reduction in exacerbations (58% at week 16 and 52% at week 24), p<0.001
- Reduction in steroid requirement, p<0.001

Safety:

- Similar compared to placebo
- Headache
- Injection site reactions


Conclusion: Omalizumab is efficacious in reducing exacerbations and steroid use in patients with allergic asthma.

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Non-type 2 inflammation Type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 **TSLP IL-25 IL-33** CXCL8 IL-6 TGF-β GM-CSF Th2 cell IL-13 IL-23 GATA3 ILC₂ GATA3 Th17 IL-4, 5, and 13 cell CRTH2 cell mepolizumab IL-5 IL-13 IgE 41 IFN-γ CRTH2 **GM-CSF** omalizumab TNF-α Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Mepolizumab (Nucala[®])

 Binds to IL-5, which reduces eosinophil levels and inflammation

Mepolizumab (Nucala®)

 Binds to IL-5, which reduces eosinophil levels and inflammation

Mepolizumab (Nucala®) - Anti IL-5

Mechanism	Binds to IL-5, which reduces eosinophil levels and inflammation
Indications	 Severe eosinophilic asthma (≥6 years) COPD with eosinophilic phenotype
Dosing	6–11 years: 40 mg SQ every 4 weeks ≥12 years: 100 mg SQ every 4 weeks
Pharmacokinetics	Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~20 days
Warnings/Precautions	 Hypersensitivity reactions Herpes zoster infection
Safety	Common (>10%): Headache, injection site reactions, back pain, fatigue, influenza, UTI Rare but serious: Hypersensitivity and herpes zoster
Pearls	 Refrigerate → room temperature max 7 days No routine lab monitoring

MENSA Phase 3 study (2014)

Evaluate efficacy in minimizing exacerbations and safety of mepolizumab in patients with **severe eosinophilic asthma**.

Intervention:

 Mepolizumab100 mg SQ or 75 mg IV vs placebo every 4 weeks for 32 weeks

Population:

- Age 12-82
- Baseline FEV₁ pred 60%
- Baseline eosinophils ~300 cells/µL
- Baseline IgE ~150 IU/mL
- At least 2 exacerbations

Results:

- Exacerbations vs placebo, p<0.001:
- •53% (SQ)
- 47% (IV)
- Improved asthma QOL scores, p<0.001

Safety:

- Similar compared to placebo
- Headache
- Injection site reactions
- Nasopharyngitis

Conclusion: Mepolizumab is efficacious in reducing exacerbations and improving quality of life in patients with eosinophilic asthma.

ADVOCATEHEALTH

MATINEE Phase 3 study (2025)

Evaluate the efficacy and safety of mepolizumab in patients with **COPD and eosinophilic inflammation** (≥300 cells/µL), receiving triple inhaled therapy.

Intervention:

 Mepolizumab 100 mg SQ every 4 weeks or placebo for 52 to 104 weeks

Population:

- At least 2 moderate or 1 severe exacerbation in the last year
- 72% smokers
- Majority moderate to severe airway obstruction (FEV₁ 30-80%)
- Baseline eosinophils ~480 cells/µL

Results:

- Decreased exacerbations by 21%, p=0.01
- Increased time to first exacerbation by 98 days, p=0.009

Safety:

- Similar compared to placebo
- Headache
- Nasopharyngitis

Conclusion: Mepolizumab is efficacious in reducing frequency and time to exacerbations and hospitalizations in COPD patients with eosinophils ≥300 cells/µL.

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Type 2 inflammation Non-type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 TSLP **IL-25 IL-33** CXCL8 IL-6 TGF-β GM-CSF IL-13 Th2 cell IL-23 GATA3 ILC2 **GATA3** Th17 IL-4, 5, and 13 cell CRTH2 cell reslizumab IL-5 mepolizumab IL-13 IL-6 IgE 4 IFN-γ CRTH2 **GM-CSF** TNF-α Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Reslizumab (Cinqair®)

Binds to IL-5, which reduces eosinophil levels and inflammation

Reslizumab (Cinqair®) - Anti IL-5

Mechanism	Binds to IL-5, which reduces eosinophil levels and inflammation				
Indications	Asthma (≥18 years; eosinophilic)				
Dosing	3 mg/kg IV infusion every 4 weeks (infuse over 20-50 minutes)				
Pharmacokinetics	 Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~24 days 				
Warnings/Precautions	 Boxed Warning: Anaphylaxis (0.3%) Malignancy Helminth infections 				
Safety	Common (>2%): Oropharyngeal pain, elevated creatine phosphokinase (CPK), myalgias, musculoskeletal pain Rare but serious: Anaphylaxis, malignancy				
Pearls	 Only IV infusion Weight based dosing 				

BREATH Phase 3 study (2016)

Characterize the effect of reslizumab on FEV₁ in **uncontrolled asthma** with eosinophils ≥400 cells/µL.

Intervention:

 Reslizumab 0.3 or 3.0 mg/kg IV or placebo every 4 weeks for 16 weeks

Population:

- Age 12-75
- Around 50% had exacerbation within last year
- Baseline FEV₁ predicted 70%
- Baseline eosinophils
 ~600 cells/µL

Results:

- FEV₁ improvement vs placebo:
 - 0.3 mg/kg: +0.115 L (p=0.0237)
 - 3.0 mg/kg: +0.16 L (p=0.0018)
- Improved QOL scores, p<0.05
- Reduced SABA rescue use, p<0.02

Safety:

- Similar compared to placebo
- Asthma worsening
- Headache
- Nasopharyngitis

Conclusion: Reslizumab is efficacious in improving lung function and quality of life in asthma patients with eosinophils ≥400 cells/µL.

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Non-type 2 inflammation Type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 **TSLP IL-25 IL-33** CXCL8 IL-6 TGF-β GM-CSF Th2 cell IL-13 IL-23 GATA3 ILC₂ GATA3 Th17 IL-4, 5, and 13 cell CRTH2 reslizumab cell mepolizumab II-5 IL-13 IgE 41 benralizumab IFN-γ CRTH2 **GM-CSF** omalizumab TNF-α Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Benralizumab (Fasenra®)

 Binds to IL-5 receptors, which reduces eosinophil levels and inflammation

Benralizumab (Fasenra®)- Anti IL-5

Mechanism	Binds to IL-5 receptor, which reduces eosinophil levels and inflammation					
Indications	Asthma (≥6 years; eosinophilic)					
Dosing	6–11 years: <35 kg: 10 mg SQ every 4 weeks × 3 doses, then every 8 weeks ≥35 kg: 30 mg SQ every 4 weeks × 3 doses, then every 8 weeks ≥12 years: 30 mg SQ every 4 weeks × 3 doses, then every 8 weeks					
Pharmacokinetics	 Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~15.5 days 					
Warnings/Precautions	 Hypersensitivity reactions: anaphylaxis, angioedema, urticaria, rash Helminth infections 					
Safety	Common (1-10%): headache, fever, pharyngitis Rare but serious: hypersensitivity and helminth					
Pearls	 Refrigerate → room temp max 14 days No routine lab monitoring 					

SIROCCO Phase 3 study (2016)

Evaluate the efficacy and safety of benralizumab in patients with **severe asthma**, uncontrolled on high-dose ICS and LABA.

Intervention:

 Benralizumab 30 mg SQ every 4 or 8 weeks vs placebo for 48 weeks

Population:

- Age 12-75
- Medium-high dose ICS for ≥1 year
- Baseline FEV₁ predicted ~56%
- Average 3 exacerbations per year

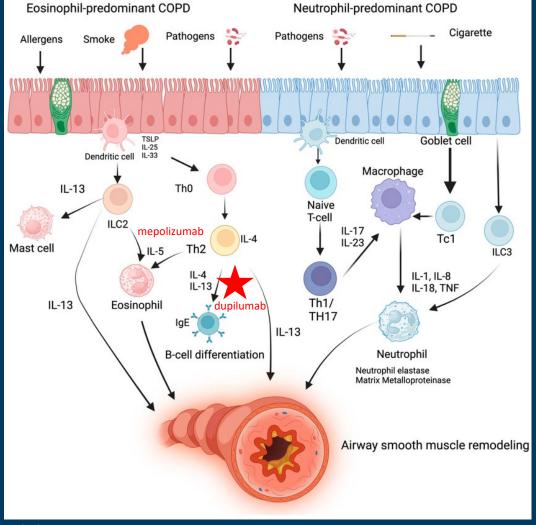
Results:

- Reduced annual exacerbations vs placebo, p<0.0001:
 - Every 4 weeks: 45%
 - Every 8 weeks: 51%
- Improved FEV₁ up to +0.159 L (p=0.0018)

Safety:

- Similar compared to placebo
- Similar between both dosing schedules
- Arthritis
- Upper respiratory infection, sinusitis
- Headache

Conclusion: Benralizumab every 4 or 8 weeks is efficacious in reducing annual exacerbations and improving lung function in patients with severe uncontrolled asthma.



Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Non-type 2 inflammation Type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 **TSLP IL-25 IL-33** CXCL8 IL-6 TGF-β GM-CSF IL-13 Th2 cell IL-23 GATA3 ILC₂ -dupilumab **GATA3** Th17 IL-4, 5, and 13 cell CRTH2 cell reslizumab IL-5 mepolizumab IL-13 IgE 4 IFN-γ CRTH2 benralizumab **GM-CSF** omalizumab TNF-α Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Dupilumab (Dupixent®)

Binds to the IL-4
 receptor alpha (IL-4Rα),
 blocking signaling from
 both IL-4 and IL-13

Dupilumab (Dupixent®)

 Binds to the IL-4 receptor alpha (IL-4Rα), blocking signaling from both IL-4 and IL-13

Dupilumab (Dupixent®)- Anti IL-4/13

Binds to the IL-4 receptor alpha (IL-4Rα), blocking signaling from both IL-4 and IL-13 Mechanism Reduces IgE production, eosinophil recruitment, and inflammatory cytokine release

Asthma (≥6 years; eosinophilic or steroid-dependent)

COPD with Type 2 Inflammation

Children <12 years: 300 mg SQ every 4 weeks (<30kg), 200 mg SQ every other week (>30 kg) Dosing

Ages 12 and up: 400 mg SQ load, then 200 mg SQ every other week OR 600 mg SQ load, then 300 mg SQ every other week

Common (>10%): eosinophilia, viral infections, injection site reaction, upper respiratory infection

Metabolism: Proteolytic degradation (not CYP-mediated) **Pharmacokinetics** Elimination Half-life: ~21–25 days

> Helminth infections **Hypersensitivity**

Live vaccines

Indications

Pearls

Warnings/Precautions

Conjunctivitis and keratitis

New onset psoriasis, eosinophilic conditions, arthritis

Rare but serious: hypersensitivity reactions

Safety Refrigerate → room temperature max 14 days

No routine lab monitoring

Many FDA indications

Dupixent (dupilumab) [package insert]. Tarrytown, NY; Regeneron Pharmaceuticals, Inc; Revised 06/2025.

LIBERTY ASTHMA QUEST Phase 3 study (2018)

Evaluate the efficacy and safety of dupilumab, in patients with **uncontrolled asthma**.

Intervention:

 Dupilumab 200 or 300 mg SQ every 2 weeks or placebo for 52 weeks

Population:

- ≥ 12 years old
- Baseline FEV₁ predicted 58%
- 50% using high dose ICS
- Baseline eosinophils ~370 cells/µL
- High exhaled nitric oxide (avg 35)

Results:

- Reduced exacerbations vs placebo, p<0.001:
 - 200 mg: 47.7%
 - 300 mg: 46%
- Improved FEV₁ +0.32 L at week 12 (200 mg), p<0.001

Safety:

- Similar compared to placebo
- Similar between 200 mg and 300 mg
- Injection site reaction
- Headache
- Nasopharyngitis
- No difference in conjunctivitis compared to placebo

Conclusion: Dupilumab 200 mg and 300 mg every 2 weeks is efficacious in reducing exacerbations and improving lung function in patients with uncontrolled asthma.

BOREAS Phase 3 study (2023)

Evaluate the efficacy and safety of dupilumab in patients with **COPD** and suspected type 2 inflammation, indicated by blood eosinophils ≥300 cells/µL on inhaled triple therapy.

Intervention:

 Dupilumab 300 mg SQ every 2 weeks or placebo for 52 weeks

Population:

- Average age 65
- 70% former smokers
- Baseline eosinophils ~400 cells/μL
- Baseline FEV₁ ~50%
- ~2 exacerbations in the last year

Results:

- Reduced exacerbations by 30%, p<0.001
- Improved FEV₁
 +0.160 L at week 12,
 p<0.001
- Improved QOL (p=0.002) and symptoms scores (p=0.001)

Safety:

- Similar compared to placebo
- Injection site reaction
- Headache
- Upper respiratory infections

Conclusion: Dupilumab is efficacious in reducing exacerbations and improving lung function and quality of life in patients with COPD and eosinophils ≥300 cells/µL.

Inflammatory mechanisms and pathobiologic features leading to severe asthma Inflammatory mechanisms associated with granulocytic inflammation Type 2 inflammation Non-type 2 inflammation Irritants, pollutants, microbes, and viruses Antigens CRTH2 IL-25 **IL-33** CXCL8 IL-6 TGF-β GM-CSF Th2 cell IL-13 IL-23 GATA3 ILC₂ dupilumab GATA3 Th17 IL-4, 5, and 13 cell CRTH2 cell reslizumab IL-5 mepolizumab IL-13 IgE 4 IFN-γ CRTH2 benralizumab **GM-CSF** omalizumab Leukotrienes Leukotriene B₄ Mast PGD₂ Eosinophil Neutrophil Histamine IL-3, 4, 5, and 9 BLT₂ Lipoxin ALX Hyperresponsiveness, remodeling, mucus production, and smooth-muscle constriction and hypertrophy

Tezepelumabekko (Tezspire®)

Blocks TSLP, prevents
 activation of multiple
 inflammatory pathways,
 including eosinophilic,
 neutrophilic, and non type 2 inflammation

Tezepelumab-ekko (Tezspire®) - Anti TSLP

Mechanism	Blocks thymic stromal lymphopoietin (TSLP), prevents activation multiple inflammatory pathways, including eosinophilic, neutrophilic, and non-type 2 inflammation				
Indications	Severe asthma (≥12 years)				
Dosing	210 mg SQ every 4 weeks				
Pharmacokinetics	 Metabolism: Proteolytic degradation (not CYP-mediated) Elimination Half-life: ~26 days 				
Warnings/Precautions	 Live vaccines Helminth infections Hypersensitivity reactions: Rash, allergic conjunctivitis, and rare anaphylaxis 				
Safety	Common (>3%): pharyngitis, arthralgia, back pain, injection site reaction Rare but serious: hypersensitivity reactions				
Pearls	 Refrigerate → room temperature max 30 days No routine lab monitoring 				

NAVIGATOR Phase 3 study (2021)

Evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, **uncontrolled asthma**.

Intervention:

 Tezepelumab 210 mg SQ every 4 weeks or placebo for 52 weeks

Population:

- Ages 12-80 years
- 75% on high dose ICS
- Baseline FEV₁ predicted 62%
- 59% had exhaled nitric oxide >25 ppb
- Variable baseline eosinophils and IgE

Results:

- Improved FEV₁ by +0.13 L, p<0.001
- Reduced exacerbations by 56%, p<0.001
- Improved QOL and asthma symptom scores, p<0.001

Safety:

- Similar compared to placebo
- Upper respiratory infection
- Injection site reactions
- Headache

Conclusion: Tezepelumab is efficacious in reducing exacerbations and improving lung function and quality of life in patients with uncontrolled asthma independent of eosinophils.

Objective 4:

Compare available biologic therapies based on mechanism, indication, and efficacy.

Biologics – Counseling Points

- Remove from fridge at least 30 minutes before injection
- Administer SQ inject into thigh, abdomen, or back of upper arm
- Injection angle
 - Pen → 90 degrees
 - Syringe → 45 degrees
- When to hold biologic treatment
 - Live vaccines (dupilumab and tezepelumab)
- 3 6 months for optimal improvement

Comparing Biologics

	Omalizumab (Xolair®)	Mepolizumab (Nucala®)	Benralizumab (Fasenra®)	Reslizumab (Cinqair®)	Dupilumab (Dupixent®)	Tezepelumab-ekko (Tezspire®)
Target	Anti IgE	Anti IL-5	Anti IL-5 receptor	Anti IL-5	Anti IL-4 receptor (IL-4/13)	Anti TSLP
FDA age approval for asthma (years)	≥6	≥6	≥6	≥18	≥6	≥12
Asthma/COPD indication	Moderate-severe persistent and allergic asthma	Severe eosinophilic asthma, eosinophilic COPD	Severe eosinophilic asthma	Severe eosinophilic asthma	Severe eosinophilic or steroid- dependent asthma, COPD with Type 2 inflammation	Severe asthma
Biomarkers for asthma	lge 30-1500 IU/mL FeNO ≥ 20 ppb	Eos ≥ 150 cells/μL	Eos ≥ 300 cells/μL	Eos ≥ 150 cells/μL	Eos 150-1500 cells/μL FeNO ≥ 25 ppb	None
Formulations	75 mg/0.5 mL: pen, syringe 150 mg/mL: pen, syringe, vial* 300 mg/2 mL: pen, syringe	100 mg/mL: pen, syringe, vial* 40 mg/0.4 mL: syringe	10 mg/0.5 mL: syringe* 30 mg/mL: syringe*, pen	100 mg/10 mL: vial*	200 mg/1.14 mL: pen, syringe 300 mg/2 mL: pen, syringe	210 mg/1.91 mL: pen, syringe*, vial*
Administration	SQ	SQ	SQ	IV (clinic only)	SQ	SQ
Other indications	Food Allergy (IgE) CRSwNP CSU	HES CRSWNP EGPA	EGPA	None	AD CRSWNP EoE PN CSU BP	None
*vials and pre-filled sy	yringes should be prepped and admini	·				

Xolair (omalizumab) [package insert]. South San Francisco, CA; Gentech USA, Inc; Revised 02/2024. Nucala (mepolizumab) [package insert]. Philadelphia, PA; GlaxoSmithKline LLC; Revised 08/2025. Fasenra (benralizumab) [package insert]. Södertälje, Sweden. AstraZeneca AB; Revised 09/2024.

Cinqair (reslizumab) [package insert]. West Chester, PA; Teva Respiratory LLC; Revised 02/2020. Dupixent (dupilumab) [package insert]. Tarrytown, NY; Regeneron Pharmaceuticals, Inc; Revised 06/2025. Tezspire (tezepelumab-ekko) [package insert]. Södertälje, Sweden. AstraZeneca AB; Revised 05/2023.

Knowledge check #4

AB, an 11-year-old patient with a 5-year history of asthma presents for follow-up due to persistent symptoms despite being on high-dose ICS-formoterol maintenance therapy. The patient reports frequent nighttime awakenings and daily use of rescue inhalers. The provider now wants to consider biologic therapy.

Laboratory findings:

Total IgE: 150 IU/mL

Allergy skin testing: Negative Blood eosinophils: 320 cells/µL

FeNO: 32 ppb Weight: 37 kg For this patient, which of the following would be appropriate biologics? (select all that apply)

- A. Omalizumab (Xolair®)
- B. Dupilumab (Dupixent®)
- C. Tezepelumab-ekko (Tezspire®)
- D. Benralizumab (Fasenra®)

References

- Appleton LK, Hanania NA, et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. New England Journal of Medicine. 2023;389(3). doi: The Future of Precision-Based Therapies. Journal of Clinical Medicine. 2024;13(21):6339-6339. doi:https://doi.org/10.3390/jcm13216339
- Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. New England Journal of Medicine. 2023;389(3). doi:https://doi.org/10.1056/nejmoa2303951
- Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for Inadequately Controlled Asthma with Elevated Blood Eosinophil Levels. Chest. 2016;150(4):789-798. doi:https://doi.org/10.1016/j.chest.2016.03.032
- Chhabra S. Clinical application of spirometry in asthma: why, when and how often? Lung India. 2015;32(6):635. doi:https://doi.org/10.4103/0970-2113.168139
- Cinqair (reslizumab) [package insert]. West Chester, PA; Teva Respiratory LLC; Revised 02/2020.
- Clinic C. Biologics (Biologic Medicine). Cleveland Clinic. Published August 9, 2024. Accessed October 8, 2025. https://my.clevelandclinic.org/health/treatments/biologics-biologic-medicine
- Curtis JL. Understanding COPD Etiology, Pathophysiology, and Definition. Respiratory Care. 2023;68(7):859-870. doi:https://doi.org/10.4187/respcare.10873
- Dupixent (dupilumab) [package insert]. Tarrytown, NY; Regeneron Pharmaceuticals, Inc; Revised 06/2025.
- Fasenra (benralizumab) [package insert]. Södertälje, Sweden. AstraZeneca AB; Revised 09/2024.
- Global Initiative for Chronic Obstructive Lung Disease. 2025 REPORT Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease Global Initiative for Chronic Obstructive Lung Disease Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease.; 2025. Accessed October 8, 2025. https://goldcopd.org/wp-content/uploads/2024/11/GOLD-2025-Report-v1.0-15Nov2024 WMV.pdf
- Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. Drazen JM, ed. New England Journal of Medicine. 2017;377(10):965-976. doi:https://doi.org/10.1056/nejmra1608969

References

- Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. New England Journal of Medicine. 2021;384(19):1800-1809. doi:https://doi.org/10.1056/nejmoa2034975
- Nucala (mepolizumab) [package insert]. Philadelphia, PA; GlaxoSmithKline LLC; Revised 08/2025.
- Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. New England Journal of Medicine. 2014;371(13):1198-1207. doi:https://doi.org/10.1056/nejmoa1403290
- Rabe KF, Rennard SI, Martinez FJ, et al. Targeting Type 2 Inflammation and Epithelial Alarmins in Chronic Obstructive Pulmonary Disease: A Biologics Outlook. American Journal of Respiratory and Critical Care Medicine. 2023;208(4). doi:https://doi.org/10.1164/rccm.202303-0455ci
- Sciurba FC, Criner GJ, Christenson SA, et al. Mepolizumab to Prevent Exacerbations of COPD with an Eosinophilic Phenotype. *New England Journal of Medicine*. 2025;392(17):1710-1720. doi:https://doi.org/10.1056/nejmoa2413181
- Simmalee K, Kawamatawong T, Vitte J, Demoly P, Lumjiaktase P. Exploring the pathogenesis and clinical implications of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO): a narrative review. *Frontiers in Medicine*. 2025;12. doi:https://doi.org/10.3389/fmed.2025.1514846
- Sinyor B, Perez LC. Pathophysiology Of Asthma. NIH. Published June 24, 2023. Accessed October 8, 2025. https://www.ncbi.nlm.nih.gov/sites/books/NBK551579/
- Solèr M, Matz J, Townley R, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. European Respiratory Journal. 2001;18(2):254-261. doi:https://doi.org/10.1183/09031936.01.00092101
- Tezspire (tezepelumab-ekko) [package insert]. Södertälje, Sweden. AstraZeneca AB; Revised 05/2023.
- Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Medicine. 2012;18(5):716-725. doi:https://doi.org/10.1038/nm.2678
- Xolair (omalizumab) [package insert]. South San Francisco, CA; Gentech USA, Inc; Revised 02/2024.
- 2025 Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma. Published 2025. Accessed October 8, 2025.
 https://ginasthma.org/2025-gina-strategy-report/

Questions?

Taylor Eustice

taylor.eustice@advocatehealth.org

CE Learning Platform https://ce.advocatehealth.org

Remember to create/update your profile on the CE platform, complete an evaluation, then claim credit

Aurora Health Care

Overview of Biologics in the Treatment of Asthma and COPD

November 13, 2025
Taylor Eustice, PharmD
PGY1 Specialty Pharmacy Resident