

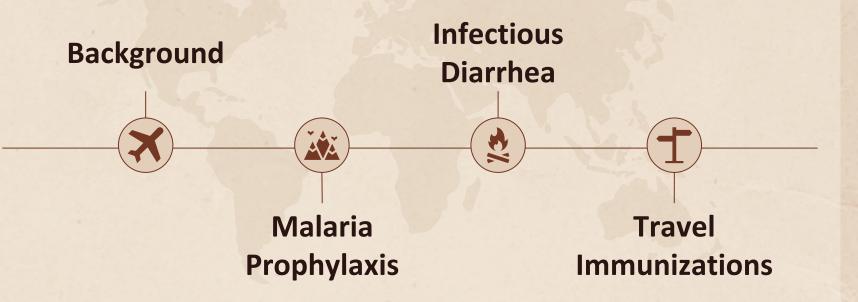
Travel Immunizations & Chemoprophylaxis:

Preventing Unwanted Infectious Souvenirs

Sarah Grace Cook, PharmD
PGY-2 Infectious Diseases Pharmacy Resident
Atrium Health Wake Forest Baptist Medical Center
November 19th, 2025

Disclosures

The planner(s) and speaker(s) have indicated that there are no relevant financial relationships with any ineligible companies to disclose.



Learning Objectives

At the end of this session, learners should be able to:

- 1. Outline the epidemiology and pathophysiology of vaccine-preventable travel-related diseases to provide appropriate context for immunization recommendations.
- 2. Identify routine and destination-specific travel immunizations recommended by the CDC Yellow Book.
- 3. Recall the common medications used for malaria prophylaxis and treatment options for infectious diarrhea.
- 4. Discuss potential interactions, contraindications, and administration considerations when developing individualized travel medicine plans.

Presentation Itinerary

Abbreviation Key

- ADRs: adverse drug reactions
- AIDS: acquired immunodeficiency syndrome
- BBW: black box warning
- BID: twice daily
- CAR-T: chimeric antigen receptor
 T-cell therapy
- CDC: US Centers for Disease Control and Prevention
- **CI**: contraindication

- CrCl: creatinine clearance
- GVHD: Graft-versus-host disease
- HIV: human immunodeficiency virus
- HSCT: hematopoietic stem cell transplantation
- IM: intramuscular
- LFTs: liver function tests
- PO: by mouth
- TID: three times daily

01

Background

Rates of International Travel

Patient Risk Assessment

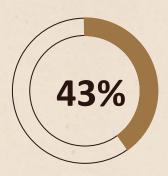
WHO

- Age
- Comorbidities

WHEN

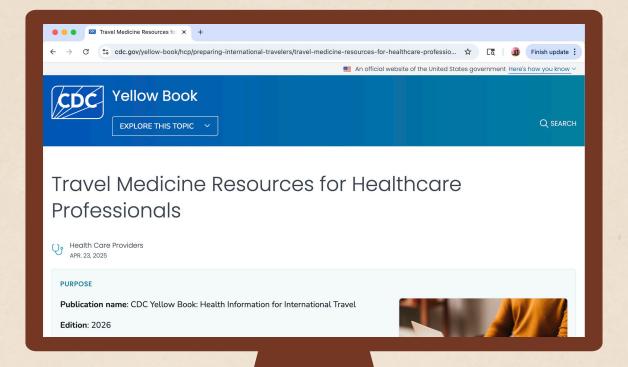
Departure season

- Reason for trip
- Length of stay
- Anticipated exposures


WHERE

- Destination country
- Climate
- Rural vs urban

Travel Medicine: Risk & Risk Reduction


International travelers who become ill

International travelers who seek pre-departure medical advice

Travel Medicine Resources

02

Malaria Prophylaxis

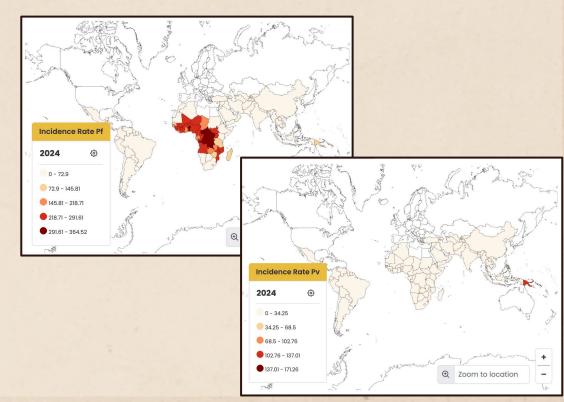
Epidemiology

• Malaria is endemic in 90 countries

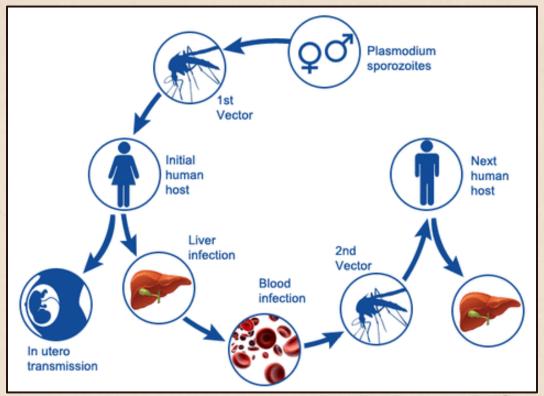
• 125 million travelers visit these countries annually

• 10,000 to 30,000 of these travelers will develop malaria

• 1% of travelers who contract malaria will die from its complications


Epidemiology

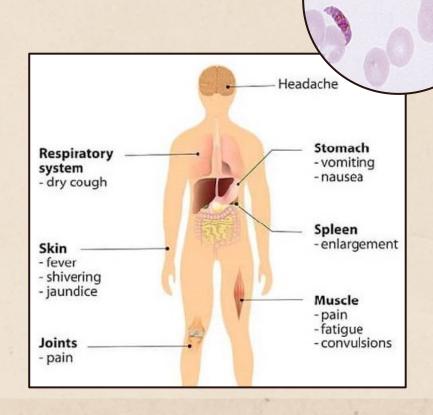
Plasmodium falciparum


- Western & sub-Saharan
 Africa
- Highest morbidity and mortality of *Plasmodia* species

Plasmodium vivax

- South Asia
- Western Pacific
- Central America

Pathophysiology


Presentation

Symptom onset: 7-15 days after being bitten by an infected mosquito

High risk patient groups: infants, children <5 years old, pregnant women, travelers, people with HIV or AIDS

Laboratory signs

- Thrombocytopenia
- Anemia
- Elevated LFTs
- Electrolyte abnormalities
- Proteinuria

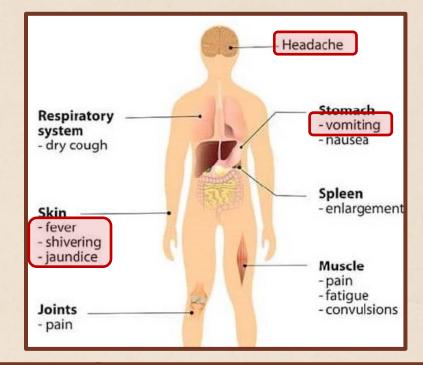
Patient Case: 23-year-old male

May to June 2025 College biology research trip in Uganda Provided atovaquone as malaria prophylaxis

September 30th, 2025

911 called due to disorientation on campus Rash, cyclic fevers, chills, headache, vomiting

October 9th, 2025


Seen by primary care provider, noted to have thrombocytopenia with elevated LFTs

Sent to the emergency department

Patient Case

Emergency Department Labs		
Temperature	100.4 ºF	
RBC, Hgb	3.77, 11.2	
WBC	4	
Lymphocytes	0.7	
Platelets	16,000	
LFTs	AST: 238 ALT: 96 Total bilirubin: 12.7	

Patient Risk Assessment

WHO

- Age
- Comorbidities

WHEN

Departure season

- Reason for trip
- Length of stay
- Anticipated exposures

WHERE

- Destination country
- Climate
- Rural vs urban

Malaria Chemoprophylaxis Options

Agent	Dosing	Timing Considerations
Atovaquone- proguanil	250/100 mg PO daily	 Start: 1 to 2 days prior to exposure Discontinue: 7 days after returning
Chloroquine	500 mg PO once weekly	 Start: 1 to 2 weeks prior to exposure Discontinue: 4 weeks after returning
Doxycycline	100 mg PO daily	 Start: 1 to 2 days prior to exposure Discontinue: 4 weeks after returning
Mefloquine	250 mg PO once weekly	 Start: ≥2 weeks prior to exposure Discontinue: 4 weeks after returning
Primaquine Off-label	30 mg PO daily	 Start: 1 to 2 days prior to exposure Discontinue: 7 days after returning
Tafenoquine	200 mg PO daily x3 days → 200 mg PO once weekly	 Start: loading dose 3 days prior to exposure, weekly dose starts 7 days after loading doses Discontinue: 4 weeks after returning

Centers for Disease Control and Prevention. Yellow Book; 2025.

Patient Population Considerations

Pregnancy & Lactation

- Atovaquone-proguanil: Cl in pregnancy and lactation
- Primaquine,
 Tafenoquine: Cl in
 pregnancy and for
 breastfeeding mothers
 with a G6PD deficient
 infant

Children

- Atovaquone-proguanil:
 Cl children <5 kg
- Doxycycline: CI <8 years old
- Tafenoquine: CI in children

Comorbidities

- Mefloquine: CI in seizure, psychiatric, or cardiac conduction disorders
- Tafenoquine: CI in psychiatric disorders (including depression & anxiety)
- Atovaquone-proguanil: CI CrCl <30 mL/min

Adverse Drug Reaction Considerations

Required G6PD Screening

- Chloroquine
- Primaquine
- Tafenoquine

Gastrointestinal Side Effects

- Atovaquoneproguanil: abdominal pain, nausea
- Chloroquine: nausea, diarrhea
- Doxycycline: diarrhea, esophageal injury
- Mefloquine: vomiting

QT Prolongation

- Chloroquine
- Primaquine

Agent-Specific Adverse Reactions

Doxycycline

Photosensitivity

Mefloquine

- BBW neuropsychiatric effects
- Abnormal dreams & insomnia
- Vision disturbance
- Seizures
- Cardiac arrythmias

Tafenoquine

- Psychosis
- Methemoglobinemia
- Epithelial keratopathy

Patient Preference Considerations

Initiation

Frequency

Administration

Last minute options:

- Atovaquone-proguanil
- Doxycycline
- Primaquine
- Tafenoquine

Once weekly dosing:

- Chloroquine
- Mefloquine
- Tafenoquine

Food not Required:

- Chloroquine
- Doxycycline
- Primaquine

Drug Interactions

Atovaquone-proguanil

- Cimetidine
- Fluvoxamine
- Metoclopramide
- Rifabutin
- Tetracycline
- Warfarin

Chloroquine

- Ampicillin
- Antacids
- Calcineurin inhibitors
- Cimetidine
- Ciprofloxacin
- CYP2D6 substrates
- CYP3A4 inhibitors
- Digoxin
- Kaolin
- Methotrexate
- QT-prolonging agents

Doxycycline

- Antacids
- Bismuth subsalicylate
- Barbiturates
- Calcineurin inhibitors
- Carbamazepine
- Iron
- mTOR inhibitors
- Penicillin
- Phenytoin
- Warfarin

Mefloquine

- Antiarrhythmic agents
- Anticonvulsants
- Beta blockers
- Calcineurin inhibitors
- Calcium channel blockers
- CYP3A4 inducers
- CYP3A4 inhibitors
- H1 receptor antagonists
- Lumefantrine
- mTOR inhibitors
- Phenothiazines
- Protease inhibitors
- Tricyclic antidepressants

Drug Interactions

Atovaquone-proguanil

- Cimetidine
- Fluvoxamine
- Metoclopramide
- Rifabutin
- Tetracycline
- Warfarin

Mefloquine

- Antiarrhythmic agents
- Anticonvulsants
- Beta blockers
- Calcineurin inhibitors
- Calcium channel blockers
- CYP3A4 inducers
- CYP3A4 inhibitors
- H1 receptor antagonists
- Lumefantrine
- mTOR inhibitors
- Phenothiazines
- Protease inhibitors
- Tricyclic antidepressants

Assessment Question #1

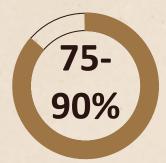
Case:

A 36-year-old man plans a trip to Cambodia. He has a history of depression treated with sertraline.

Question:

Which malaria prophylactic should be avoided?

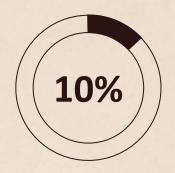
- A. Doxycycline
- B. Mefloquine
- C. Atovaquone-proguanil
- D. Chloroquine


03

Infectious Diarrhea

29.01.11 * USA*/

Travelers' Diarrhea


Bacteria

Enterotoxigenic E. coli Campylobacter jejuni Shigella spp. Salmonella spp. Aeromonas spp. Plesiomonas spp.

Viruses

Norovirus Astrovirus Sapovirus Rotavirus

Protozoa

Giardia Cryptosporidium Entamoeba histolytica Dientamoeba fragilis Cyclospora*

Travelers' Diarrhea: Packing for Prevention

Bismuth subsalicylate

- Reduces incidence by 50%
- Generally not recommended age <12

Probiotics

- Lactobacillus GG
- Saccharomyces boulardii
- Insufficient data to recommend use

Rifaximin

- Only indicated in short term, high-risk hosts
- 200 mg by mouth 1-3 times daily x3 days

Prophylactic antibiotics are no longer recommended based on risk vs benefit analysis

Mild diarrhea: Symptomatic relief only

Moderate diarrhea:

Loperamide monotherapy ± antibiotic

Severe diarrhea: Loperamide + antibiotic

Symptomatic Relief

Loperamide
Bismuth subsalicylate

Antibiotics

Azithromycin
Fluoroquinolone
Rifamycin
Rifaximin

JOURNAL ARTICLE

EDITOR'S CHOICE

Trial Evaluating Ambulatory Therapy of Travelers' Diarrhea (TrEAT TD) Study: A Randomized Controlled Trial Comparing 3 Single-Dose Antibiotic Regimens With Loperamide •••

Mark S Riddle ▼, Patrick Connor, Jamie Fraser, Chad K Porter,
Brett Swierczewski, Emma J Hutley, Brook Danboise, Mark P Simons,
Christine Hulseberg, Tahaniyat Lalani ... Show more
Author Notes

Clinical Infectious Diseases, Volume 65, Issue 12, 15 December 2017, Pages 2008–2017, https://doi.org/10.1093/cid/cix693

Published: 23 September 2017 Article history ▼

Design

- Randomized, double-blind trial assessing loperamide + single dose antibiotics for acute watery travelers' diarrhea
- 4 countries: Afghanistan, Djibouti, Kenya, and Honduras
- US and UK service members deployed in 4 countries assigned to either:
 - 1) azithromycin 500 mg
 - 2) levofloxacin 500 mg
 - 3) rifaximin 1650 mg
- Primary outcome: clinical cure at 24 hours

Results

- Safety: No differences in post-dose nausea, vomiting, or other adverse events between groups
- Conclusion: Single-dose azithromycin, levofloxacin, and rifaximin with loperamide were comparable for treatment of acute watery diarrhea

Clinical Cure at 24 hours		
Levofloxacin	81.4%	
Azithromycin	78.3%	
Rifaximin	74.8%	

Antibiotic	Dosing Regimen(s)
1 st Line Azithromycin	 1000 mg given via single or divided dose for up to 3 days 500 mg daily x3 days
Ciprofloxacin	750 mg x1 dose500 mg BID x3 days
Levofloxacin	500 mg daily for up to 3 days
Rifamycin SV	• 388 mg BID x3 days
Rifaximin	200 mg TID x3 days

Assessment Question #2

Case:

A 32-year-old man plans a 3-week trip to Kenya for a safari. He has no chronic health conditions. He asks about malaria prevention and what to do if he develops diarrhea while traveling. He leaves for Kenya in 5 days.

Question:

Which of the following is an appropriate combination of prophylaxis and empiric self-treatment?

- A. Doxycycline for malaria prophylaxis and ciprofloxacin for traveler's diarrhea
- B. Mefloquine for malaria prophylaxis and azithromycin for traveler's diarrhea
- C. Atovaquone-proguanil for malaria prophylaxis and azithromycin for traveler's diarrhea
- D. Primaquine for malaria prophylaxis and rifaximin for traveler's diarrhea

04

Travel Immunizations

Routine Pre-Travel Vaccinations

Vaccines to Update & Consider

COVID-19

Haemophilus influenzae type B

Hepatitis A & Hepatitis B

Measles, Mumps, & Rubella

Meningococcal disease (serogroups A, C, W, & Y)

Pneumococcal

Poliovirus

Tetanus, diphtheria, pertussis

Respiratory syncytial virus

Varicella

Zoster

Influenza

Hepatitis A

Transmission: Contaminated food and water

Vaccination: 2 doses administered ≥6 months apart

Considerations: At least 1 dose should be given prior to travel

Meningococcal Disease

Etiology: Neisseria meningitidis

Transmission: Respiratory secretions

Vaccination: If 5 or more years have passed since the most recent MenACWY vaccine, a booster dose is recommended at least 7–10 days before travel to hyperendemic countries

The Meningitis Belt

Meningococci are classified into 12 serogroups based on the structure of the polysaccharide capsule

Serogroups A, C, W, and X are historically responsible for outbreaks in the meningitis belt

Serogroup B disease is extremely rare in the meningitis belt

Destination-Specific Travel Vaccinations

Patient Risk Assessment

WHO

- Age
- Comorbidities

WHEN

Departure season

- Reason for trip
- Length of stay
- Anticipated exposures

WHERE

- Destination country
- Climate
- Rural vs urban

Chikungunya Fever

Etiology: Enveloped, RNA arbovirus from the

Togaviridae family

Transmission: Aedes aegypti and Aedes albopictus mosquito bites

Symptoms: High fevers, arthralgia, maculopapular rash, headache, myalgia

Chikungunya Fever

- Vaccination: single-dose vaccine; liveattenuated (IXCHIQ) or virus-like particle (VIMKUNYA) vaccine
- Recommendation: All travelers going to an outbreak area; may be considered for travelers going to an elevated risk area
 ≥6 months
- Considerations:
 - Hospitalizations, cardiac events, and neurologic events have been reported with the live vaccine (IXCHIQ)

Current Outbreak Areas

- Bangladesh
- Cuba
- Guangdong Province, China
- Kenya
- Madagascar
- Somalia
- Sri Lanka

Elevated Risk Areas

- Brazil
- Colombia
- India
- Mexico
- Nigeria
- Pakistan
- Philippines
- Thailand

29.01.11

1 L5A*

Chikungunya Vaccine (VIMKUNYA):

Phase 3 trial safety data in ≥65-year-old patients

No vaccine-related serious adverse events or deaths were reported during the 6-month follow up period

Post-authorization surveillance also found no serious adverse events in ≥65-year-olds after more than 12,500 doses administered

Data supports a favorable safety profile for the Chikungunya virus-like particle vaccine in elderly adults

Chikungunya Vaccine (VIMKUNYA):

Phase 3 trial efficacy data in ≥65-year-old patients

Immunogenicity

The vaccine induced a rapid and robust neutralizing antibody response

Day 15

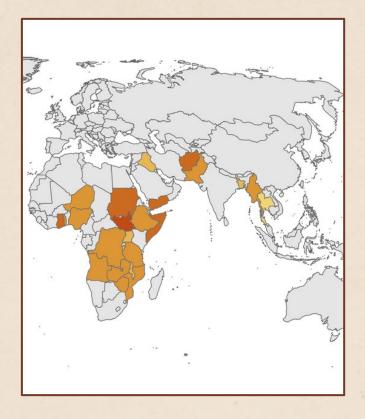
82% (149/181) achieved seroprotective antibody levels (NT80 \geq 100)

Day 22

87% (165/189) achieved seroresponse

Day 183 (6 months)

76% (139/184) maintained seroresponse


Cholera

Etiology: Vibrio cholerae toxin

Transmission: Contaminated food and water

Symptoms: Severe, dehydrating watery diarrhea which resembles rice water. Can rapidly progress to hypovolemic shock in a few hours

Cholera

- Vaccination: single-dose oral vaccine (CVD 103-HgR); live, attenuated
- Recommendation: individuals aged 2-64 years old who are traveling to areas of active cholera transmission
- Considerations:
 - Must be administered ≥10 days before travel

Japanese Encephalitis

Etiology: The Japanese encephalitis virus (JEV) is a single-stranded RNA arbovirus from the *Flaviviridae* family

Transmission: Bites from *Culex* mosquito species

Symptoms: Fever, headache, vomiting → disorientation, weakness, coma, and seizures

Japanese Encephalitis

- Vaccination: 2-dose vaccine with booster dose at 1 year if ongoing exposure
- Recommendations:
 - Frequent or long-term travel (≥ 1 month) to an endemic area
 - Short-term travelers to an endemic area if during transmission season, the itinerary includes substantial outdoor time, or accommodations do not include air-conditioning, bed nets, or screens
- Considerations: complete series ≥1 week prior to travel

AIRPOP,

29.01.11

* U5A*

Tick-borne Encephalitis

Etiology: The tick-borne encephalitis virus (TBE) is a single-stranded RNA arbovirus from the *Flaviviridae* family

Transmission: *Ixodes persulcatus, Ixodes ricinus, and Ixodes ovatus* tick bites or ingesting unpasteurized dairy products from infected animals

Symptoms: Fever, headache, vomiting, and weakness initially, followed by confusion, loss of coordination, difficulty speaking, weakness of the extremities, and seizures

Tick-borne Encephalitis

- Vaccination: 3-dose series with booster dose at 3 years if ongoing exposure; inactivated, whole-virus vaccine
- Recommendation: travel to an endemic area + extensive outdoor activities
- Considerations:
 - Two vaccine formulations: children (1-15 years) and adults (≥16 years)

Typhoid Fever

Etiology: Salmonella enterica Typhi and Paratyphi serotypes

Transmission: Contaminated food and water

Symptoms: Gradual onset of fever with fatigue, anorexia, headache, malaise, abdominal pain, and diarrhea; can progress to sepsis or intestinal perforation

Typhoid Fever

- Vaccination: Intramuscular Vi polysaccharide vaccine (≥2 years old) or oral live, attenuated Ty21a vaccine (≥6 years old)
 - 43% efficacy with the oral vaccine, 61% with the intramuscular vaccine
- Recommendation: travel to endemic area
- Considerations:
 - IM: Administer ≥2 weeks before travel; booster dose every 2 years
 - PO: Complete 4 doses of oral vaccine (taken every other day) ≥10 days before travel; booster every 5 years

Centers for Disease Control and Prevention. Yellow Book; 2025.

Yellow Fever

Etiology: The yellow fever virus is a single-stranded RNA arbovirus from the *Flaviviridae* family

Transmission: Bites from infected *Aedes* or *Haemagogus* species mosquitoes

Symptoms: fever, chills, severe headache, myalgia, nausea, vomiting, fatigue, weakness → jaundice, bleeding, and shock

Yellow Fever

- Vaccination: single-dose; live, attenuated
- Recommendation: travel to endemic area
- Considerations:
 - Administer ≥10 days before planned arrival per international requirements
 - Travelers should carry proof of vaccination (yellow card) for countries requiring yellow fever vaccination for entry

PARPOR>

* U5A*

Assessment Question #3

Case:

A 45-year-old man is traveling to Brazil for a 10-day eco-tourism trip in the Amazon basin. He has received standard adult vaccinations and reports a tetanus booster 6 years ago.

Question:

Which additional vaccine should be administered prior to travel based on destination-specific recommendations?

- A. Yellow fever
- B. Japanese encephalitis
- C. Rabies
- D. Cholera

Pre-travel Vaccination Scenarios

Pregnant Travelers

Routine live vaccines are contraindicated

- Measles, mumps, and rubella (MMR)
- Varicella

Destination-based vaccines may be used if benefit outweighs risk due to limited data

- Cholera
- Japanese encephalitis
- Typhoid (intramuscular formulation)
- Yellow fever

Most vaccines can be given at the same visit at separate injection sites

Administering multiple vaccines does not impair antibody response or increase rates of adverse reactions

There is no max number of vaccines a patient may receive at a single visit

Live vaccines may be given simultaneously

If live vaccines are not administered on the same day, they should be separated by ≥4 weeks to avoid impaired immune response and reduced vaccine efficacy

If multiple live vaccines are not separated by ≥4 weeks, vaccines other than the original vaccine administered should be repeated

Limited data shows reduced immunogenicity with co-administration of yellow fever and MMR live vaccines

If feasible, separate administration of yellow fever and MMR vaccines by 4 weeks

Study	Design	Results
Michel et al. <i>J</i> vaccine. 2015.	Compared the humoral response to yellow fever and measles in children vaccinated simultaneously or separated by 7-28 days, with the measles vaccine given first	 284 children total 54 children vaccinated 7-28 days apart (test group) 91.7% positive measles serology 90.7% yellow fever antibodies
Silva et al. <i>J</i> vaccine. 2011	Assessed immunogenicity of the yellow fever and MMR vaccines given either simultaneously or 30+ days apart in 12-month-old children	1769 children total; seroconversion rates: Simultaneous 30-day separation
		administration 90% rubella 90% yellow fever 61% mumps 98% measles 98% measles

Immunocompromised Travelers

Examples of travelers with limited immune deficits not requiring specialized precautions

- Cancer: Last chemotherapy ≥3 months and malignancy in remission
- CAR-T, HSCT: ≥2 years posttransplant, not taking immunosuppressants, no ongoing malignancy, and no GVHD
- Autoimmune disease: Not receiving immunosuppressive or immunomodulatory drug therapy
- Corticosteroids: >1 month since highdose (≥20 mg/day of prednisone or equivalent for ≥2 weeks) steroid use

Immunocompromised Travelers

Vaccines contraindicated in severely immunocompromised individuals

- Chikungunya (IXCHIQ)
- Cholera
- Measles, mumps, and rubella (MMR)
- Typhoid (live, attenuated)
- Varicella
- Yellow Fever

Last-Minute Traveler Vaccination

Single-dose Protection

Accelerated Schedules

- Hepatitis A
- Meningococcal ACWY
- Polio booster
- Typhoid
- Tetanus-diphtheria
- Cholera

- Japanese encephalitis (day 0,7)
- Tick-borne encephalitis (day 0, 14)
- Hepatitis B (days 0, 7, 21)

Travel Vaccinations in Development

2025-2029

Norovirus
Shigella
Inactivated Rotovirus
Paratyphoid
Zika virus
Lyme
Enterotoxigenic *E. coli*

2030-2034

Vivax Malaria
Schistosomiasis
Hepatitis C Virus
Nontyphoidal salmonella

Non-Pharm Protection

Wash hands, produce with peels, bottled water, cooked meats

>10% active ingredient bug spray & bed netting

Face mask or N95 respirator

Take-Home Points

- Travel medicine consultation is a valuable yet under-utilized resource.
- Travel medicine recommendations are provided in the CDC Yellow Book.
- Malaria chemoprophylaxis regimen choice is driven by safety, tolerability, interacting medications, comorbidities, and patient preferences.
- Antibiotics may be considered for moderate to severe travelers' diarrhea, with azithromycin being the first-line agent.
- Pre-travel vaccination recommendations are patient and location specific.

References

- 1. International Trade Administration. U.S. International Air Travel Statistics (I-92 data). Washington, DC: U.S. Department of Commerce, International Trade Administration; 2024. Available at: https://www.trade.gov/us-international-air-travel-statistics-i-92-data
- 2. Kotton CN, Freedman DO. Protection of travelers. In: Bennett JE, Dolin R, Blaser MJ, eds. *Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases*. 9th ed. Vol 2. Philadelphia, PA: Elsevier; 2020:3862-3871.e2.
- 3. Angelo KM, Kozarsky PE, Ryan ET, Chen LH, Sotir MJ. What proportion of international travellers acquire a travel-related illness? A review of the literature. *J Travel Med*. 2017;24(5). doi:10.1093/jtm/tax046. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825178/
- 4. Raphael E, Traversa R, Barillari G, et al. Surveying health-related knowledge, attitudes and behaviours of travellers: a cross-sectional study. *J Travel Med*. 2020;27(8):taaa130. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695092/.
- 5. Centers for Disease Control and Prevention. CDC Yellow Book: Health Information for International Travel. Edition 2026. Atlanta (GA): CDC; 2025. Available at: https://www.cdc.gov/yellow-book/hcp/contents/index.html
- 6. StatPearls. Malaria [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan 1 [updated 2024 Oct 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551711/
- 7. Malaria Atlas Project. Malaria incidence (Plasmodium falciparum) rate by country, admin 0 level, 2024. Available at: https://data.malariaatlas.org/trends?year=2024&metricGroup=Malaria&geographicLevel=admin0&metricSubcategory=Pf&metricType=rate&metricName=incidence
- 8. Malaria Vaccine Initiative. Malaria parasite life cycle. Available at: https://www.malariavaccine.org/tools-resources/malaria-parasite-life-cycle
- 9. Centers for Disease Control and Prevention. CDC Pink Book: Health Information for International Travel. Edition 2026. Atlanta (GA): CDC; 2024. Available at: https://www.cdc.gov/pinkbook/hcp/table-of-contents/index.html
- 10. Riddle MS, Connor P, Fraser J, et al. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2017;65(12):2008-2017. doi:10.1093/cid/cix693.
- 11. Chang LJ, Dowd KA, Mendoza F, et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. The Lancet. 2014;384(9959):2046-2052. doi:https://doi.org/10.1016/s0140-6736(14)61185-5
- 12. McGuinness S, Clemens SAC, Clemens R, et al., Re-imagining combination vaccines for travel medicine, Journal of Travel Medicine, Volume 32, \square Issue 5, July 2025, taaf033, https://doi.org/10.1093/jtm/taaf033

Questions?

Sarah Grace Cook, PharmD
PGY-2 Infectious Diseases Pharmacy Resident
Atrium Health Wake Forest Baptist Medical Center
Sarah.Cook1@advocatehealth.org

Travel Immunizations & Chemoprophylaxis:

Preventing Unwanted Infectious Souvenirs

Sarah Grace Cook, PharmD
PGY-2 Infectious Diseases Pharmacy Resident
Atrium Health Wake Forest Baptist Medical Center
November 19th, 2025

