Closing the Gap: Optimizing DKA Treatment Through the SQuID Protocol

Presented by:

Tom Szwajnos, PharmD, MS
PGY2 Emergency Medicine Pharmacy Resident
Advocate Christ Medical Center
October 29th, 2025

Disclosures of Interest

The planner(s) and speaker(s) have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Abbreviations

- •ADA American **Diabetes Association**
- •AG Anion Gap
- •BG Blood Glucose
- •BMP Basic Metabolic
- Panel
- **•D5W** − 5% Dextrose in Water
- •**DKA** Diabetic
- Ketoacidosis
- •**ED** Emergency Department

- •ESI Emergency Severity Index
- •GAD Glutamic Acid
- Decarboxylase
- •**HHS** Hyperglycemic
- Hyperosmolar State
- •IA Islet Antigen
- •ICU Intensive Care Unit Insulin for DKA
- •IV Intravenous
- •LOS Length of Stay

- •NIS National Inpatient Sample
- •NS Normal Saline
- (0.9% sodium chloride)
- •POC Point of Care
- •PRN As Needed
- •SQuID Subcutaneous
- •TDD Total Daily Dose
- •T1DM Type 1 Diabetes
- •T2DM Type 2 Diabetes

Objectives

At the end of this session, learners should be able to:

- 1. Identify the signs and symptoms of DKA using clinical laboratory findings
- 2. Outline current treatment algorithms and appropriate DKA treatment strategies
- 3. Select appropriate alternative DKA treatment strategies based on patient presentation

Diabetes

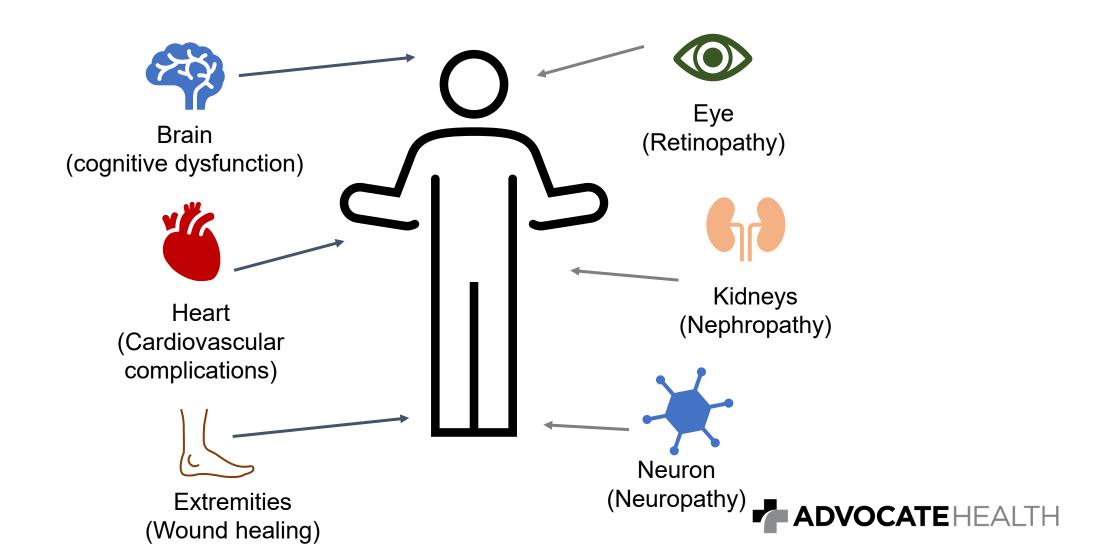
Diabetes is a metabolic disease resulting in inappropriately elevated blood glucose levels

There are several different classifications of diabetes but subdivided into two major categories: Type 1 and Type 2 diabetes

Common symptoms include increased thirst, frequent urination, blurry vision

Type 1 Diabetes

- Results from autoimmune destruction of pancreatic β-cells
- Accounts for 5-10% of all diabetes cases
- Patients will often have low or undetectable levels of Cpeptide
- Genetic and environmental factors as well as viruses have been associated with T1DM
- Treatment involves daily insulin administration



Type 2 Diabetes

- Results from decreased biological response to insulin
- Accounts for 90-95% of all diabetes
- Patients may have insulin levels that appear normal or elevated while maintaining elevated blood glucose levels
- Risk factors include genes and lifestyle factors
- Treatment includes lifestyle modifications and the use of antihyperglycemic medications
- Insulin resistance can improve with modifications but rarely returns to baseline

Complications of Diabetes

Diabetic Ketoacidosis

Characterized by uncontrolled hyperglycemia, metabolic acidosis, and increased body ketone production

Life-threatening complication often seen with T1DM

The "Five I's" of DKA precipitation

History of DKA

First described by Dr. Julius Dreshfeld in 1886 in the Bradshawe Lecture

Originally divided into 3 groups:

- Diabetic collapse or diabetic coma
- Alcoholic form or alcoholic ketoacidosis
- Acetonemic form resulting in acetone or fruity smell on breath

Common Symptoms noted:

- Altered mental status
- Reduced volume
- Acetones present in the urine; acetone like smell from patient; β-oxy-butyric acid
- Albuminuria
- Rapid breathing (Kussmaul breathing)

Treatment Recommendations in the 1800's

Prevention Focused

- Avoid excessive physical and mental exertion
- Prevent constipation with laxatives
- Avoidance of nitrogenous diets

DKA Treatment

- IV sodium chloride of sodium phosphate
- Blood transfusion
- Large doses of sodium bicarbonate
- Ether and camphor infused oxygen inhalation

Mortality

• Fatality rate approximately 90% as soon as 12-24 hours after presentation

The Discovery of Insulin

Insulin first discovered in 1921 by Frederick Banting

J.B. Collip and John Macleod first administered insulin to a child in 1922

Patent sold for \$1 to ensure broad access

Mortality decreased with to 60% in 1923, and 3%–10% by 1974

Current in-hospital mortality in developed countries <1%

DKA Epidemiology

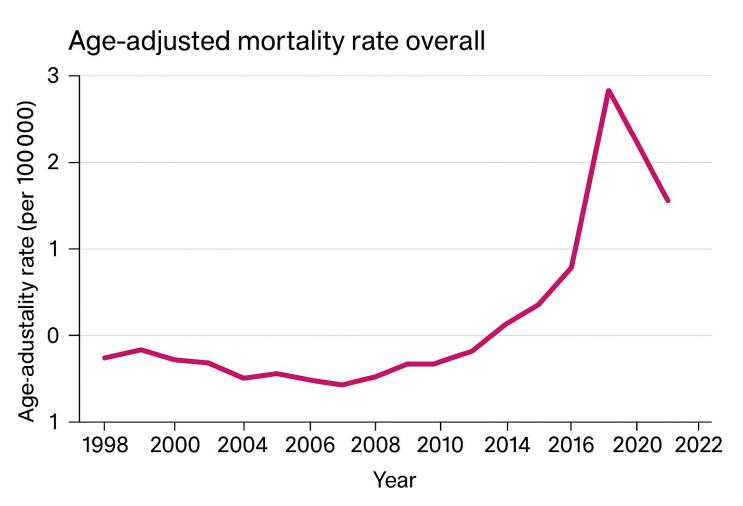
Incidence of DKA

38% of hyperglycemic crises are DKA

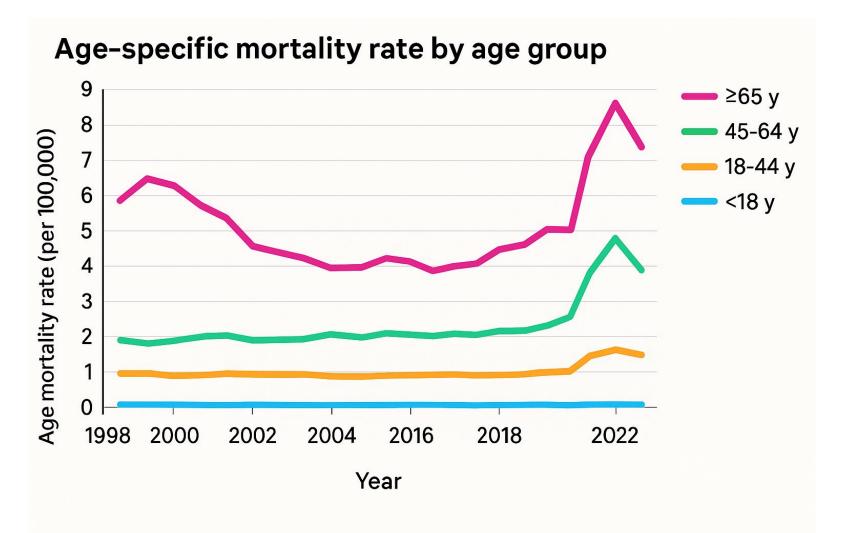
DKA Recurrence

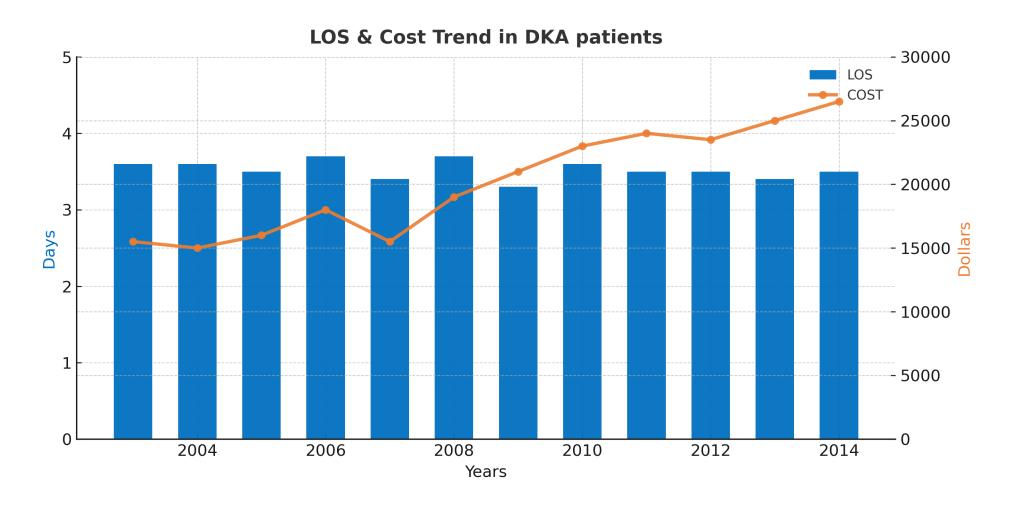
 33.7% of people admitted with DKA had at least 1 hospitalization in the past year

DKA Epidemiology


DKA prevalence in children: 35.3% to 40.6%

DKA incidence in adults: affects about 5-8% of T1DM adults


Mortality of 0.38%


Increasing Mortality Trends

Increasing Mortality Trends by Age Group

Healthcare Associated Costs

Healthcare Associated Costs

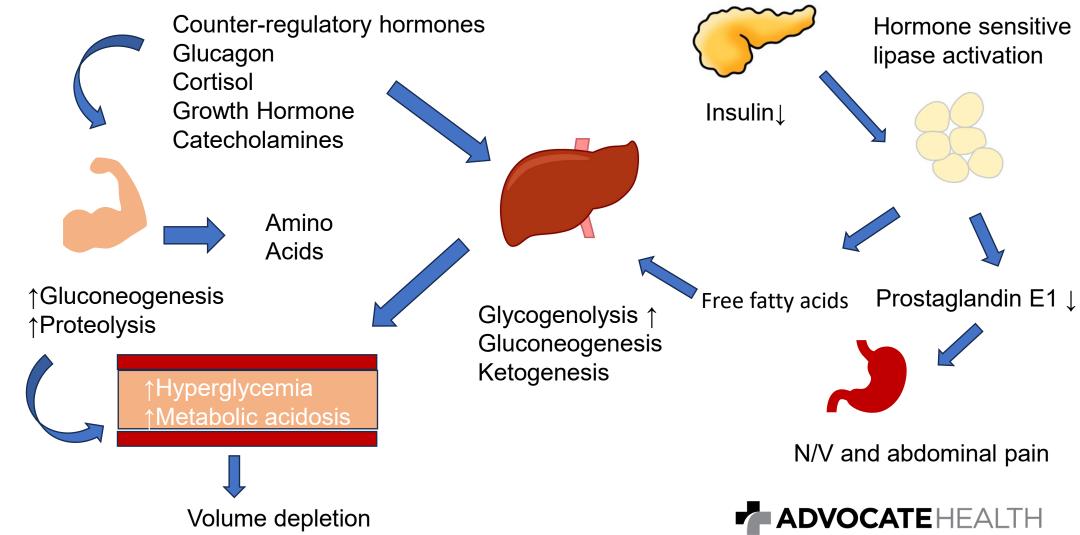
The average length of hospital stay for patients with DKA slightly decreased

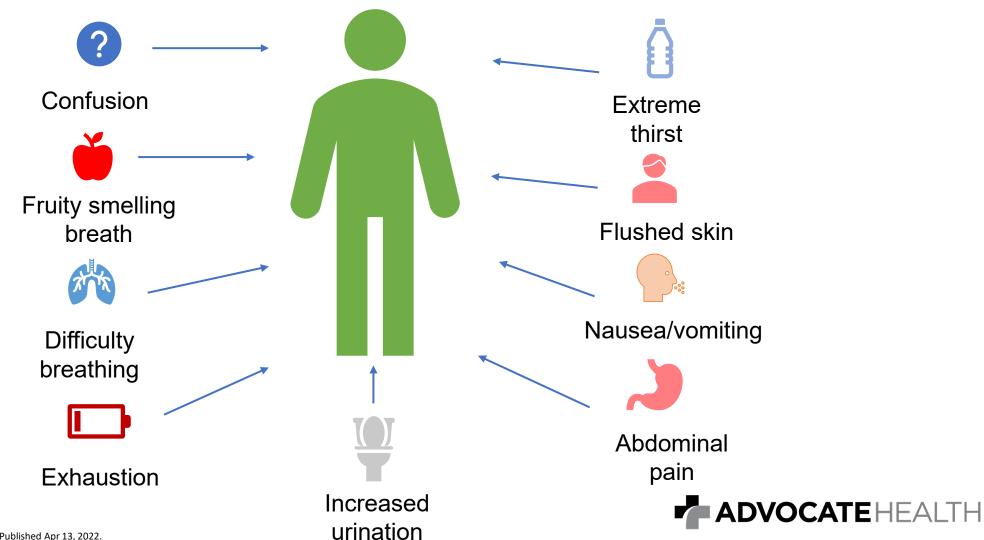
Mean hospital charges per patient increased by 40% from 2003-2017

The total aggregate cost for hospitalizations with DKA increased by nearly \$3 billion

Healthcare Associated Costs

ICU admission


Frequent lab monitoring


1:1 Nursing care

Pathophysiology of DKA

Electrolyte Loss

Signs and Symptoms of DKA

Causes of Symptoms

Confusion

Fruity smelling breath

Kussmaul respirations

GI upset

Flushed skin

Exhaustion

Extreme thirst and polyuria

Modern Diagnosis of DKA

Hyperglycemia or history of diabetes

Ketosis

Metabolic acidosis

DKA vs. HHS

Clinical/Lab Findings	DKA	HHS
Onset	Rapid (hours to 1-2 days)	Gradual (several days to weeks)
Blood glucose	200-600 mg/dL	>600 mg/dL
Ketones	Present	Absent
рН	<7.3	≥7.3
B-hydroxybutyrate	≥3.0 mmol/L	<3.0 mmol/L
Bicarbonate	<18 mmol/L	≥15 mmol/L
Osmolality	Moderately elevated	Severely elevated (>320 mOsm/kg)
Neurological symptoms	Mild to moderate confusion	Severe confusion, seizures, coma

Changes in DKA Diagnosis

Diagnostic Criteria	2009 Consensus Statement	2024 Consensus Report
Blood glucose	Glucose >250 mg/dL	Glucose ≥200 mg/dL OR History of diabetes, irrespective of presenting glucose values
Ketosis	Serum ketones: positive Urine ketones: positive	β-hydroxybutyrate ≥ 3 mmol/L OR Urine ketone strip ≥ 2+
Metabolic Acidosis	pH ≤7.3 Bicarbonate ≤18 mmol/L Anion gap >10	pH <7.3 with or without bicarbonate <18 mmol/L

Changes in Fluid Management

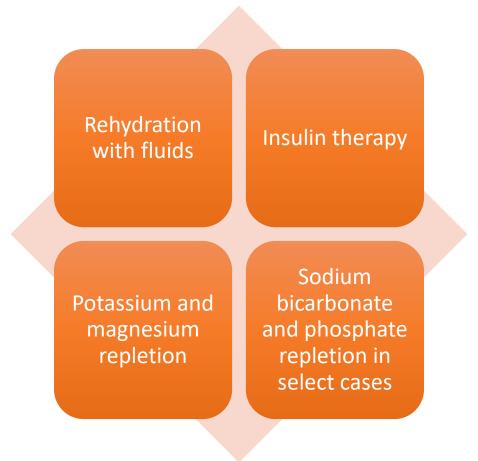
Fluid	2009 Consensus Statement	2024 Consensus Report
Type	0.9% NaCl during the first hour 0.45% NaCl indicated if serum sodium is high or normal with 0.9% NaCl continued if serum sodium low Change to dextrose 5% with 0.45% NaCl when glucose reaches 200 mg/dL	0.9% NaCl or balanced crystalloid solutions Add dextrose 5% or 10% when glucose reaches <250 mg/dL
Volume	15–20 mL/kg/hour or 1–1.5 L in the first hour Subsequently, 250–500 mL/hour	500–1,000 mL/hour during the first 2–4 hours Subsequently, adjust rate as clinically appropriate
Time to correction of estimated fluid deficit	24 hours	24-48 hours

Changes in Insulin Management

Insulin	2009 Consensus Statement	2024 Consensus Report
Initial	0.1 units/kg regular insulin in IV bolus, followed by0.1 units/kg/hour regular insulinOR0.14 units/kg/hour regular insulin	Moderate and severe DKA: 0.1 units/kg/hour (consider 0.1 units/kg IV bolus if IV access is delayed) of regular insulin Mild and moderate DKA: Subcutaneous rapid-acting insulin 0.1 units/kg every 1 hour or 0.2 units/kg every 2 hours
Initial glucose goal for dextrose initiation	< 200 mg/dL	<250 mg/dL
Maintenance after dextrose initiation	Decrease insulin infusion to 0.02-0.05 units/kg/hr until resolution	Decrease insulin infusion to 0.05 units/kg/hr until resolution
Glucose goal until resolution	150-200 mg/dL	15-200 mg/dL

Changes in Potassium Management

Potassium	2009 Consensus Statement		2024 Consensus Report	
Low	< 3.3 mEql/L	20–30 mEq/hour KCl and postpone insulin therapy until serum potassium > 3.3 mEq/L	< 3.5 mEq/L	10–20 mEq/hour KCl and postpone insulin therapy until serum potassium > 3.5 mmol/L
Normal	3.3–5.2 mEq/L	20–30 mEq KCl in each liter of IV fluid to maintain serum potassium of 4–5 mEq/L	3.5–5.0 mEq/L	10–20 mEq KCl in each liter of IV fluid to maintain serum potassium of 4–5 mEq/L
High	> 5.2 mEq/L	Do not give potassium but check serum potassium every 2 hours	> 5.0 mEql/L	Do not give potassium but check serum potassium every 2 hours



DKA Classification

Clinical Findings	Mild	Moderate	Severe
Glucose (mg/dL)	>200	>200	>200
рН	>7.25 to <7.30	7.00 to 7.25	<7.00
Bicarbonate (mmol/L)	15-18	10 to <15	<10
Urine Ketones	Positive	Positive	Positive
B-hydroxybutyrate (mmol/L)	3 to 6	3 to 6	>6
Mental Status	Alert	Alert and/or drowsy	Stupor and/or coma

ADA Treatment Algorithm

ADA Insulin Management: Mild DKA

0.1 units/kg rapid acting insulin as a subQ bolus

0.1 units/kg subQ every hour or 0.2 units/kg subQ every 2 hours if BG ≥250 mg/dL

When glucose <250 mg/dL decrease to 0.1 units/kg subQ every 2 hours

ADA Insulin Management: Moderate to Severe DKA

0.1 units/kg IV of insulin regular as a bolus if delay in infusion initiation

0.1 units/kg/hr IV insulin regular infusion

When glucose <250 mg/dL decrease insulin regular infusion rate to 0.05 units/kg/hr

Knowledge Check #1

Which clinical finding in a patient with suspected DKA would classify them as a severe case?

- a. Positive urine ketones
- b. Glucose of 540 mg/dL
- c. pH 6.9
- d. β-hydroxybutyrate of 4 mmol/L

AAH Midwest Inpatient Adult DKA Protocol Algorithm

7 potential algorithms for starting and titrating insulin infusions based on blood glucose levels

Blood glucose checked at least every 1 hour or more frequently as needed

Insulin infusion rate is typically titrated based on blood glucose trends

DKA Resolution

ADA Consensus Report	AAH Midwest Guidelines
Plasma ketone <0.6 mmol/L	Anion gap has resolved
Venous pH ≥7.3	
Bicarbonate ≥18 mmol/L	>2 hours since the first dose of long-acting insulin
SubQ insulin once DKA has resolved and patient clinical improves	

Transition to Subcutaneous Insulin

Weight-based estimate

- 0.5-0.6 units/kg/day for TDD
- 0.3 units/kg/day TDD for patients at risk of hypoglycemia

Preadmission insulin requirements

- Consider TDD prescribed for outpatient use prior to admission
- Adjust antihyperglycemic regimen based on lifestyle factors, glucose control, and medication taking habits

Hourly IV insulin requirements

- Summation of hourly insulin requirements to estimate TDD
- May overestimate insulin needs

Long-acting insulin

• 0.15-0.3 units/kg subQ either once daily or divided into 2 doses

Knowledge Check #2

An IV insulin infusion, when used for treatment of DKA can be considered for discontinuation per the ADA when:

- a. Immediately after the first dose of subcutaneous insulin
- b. When the anion gap has resolved
- c. At the time of discharge
- d. 30 minutes after the first dose of subcutaneous insulin

Current Practice

SIGNIFICANT LOS

REQUIRES CONTINUOUS INSULIN INFUSION

REQUIRES ICU BED

ESTIMATED ASSOCIATED COST PER DKA ADMISSION ~\$25,000

New Insulin Treatment Approach

Alternative Treatment Option

The SQuID protocol is a novel option for treating mild to moderate DKA

Utilizes subQ insulin lispro vs. insulin drip

Dosing is weight based and given at fixed intervals

IV fluids and electrolyte repletion

Standard blood glucose monitoring

Why was it proposed?

The use of IV insulin infusions require: ICU admission, frequent lab monitoring, and 1:1 nursing ratio

ED and hospital boarding delays and ICU capacity constraints

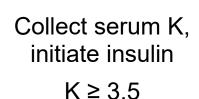
Safe alternative for mild DKA that does not require ICU admission

The SQuID Protocol (Griffey, et al. 2023)

Trial Design			
Prospectively-derived quasi-experimental study evaluating the impact of the SQuID protocol			
Interv	ention		
SQuID protocol vs. traditional IV insulin regular infusion for DKA			
Inclusion Criteria	Exclusion Criteria		
 Patients presenting to the ED Diagnosis of mild or moderate DKA 	 Diagnosis of severe DKA Pregnancy Severe infection MI AMS Active comorbidities 		

SQuID Severity Index

Clinical Findings	Mild	Moderate	Severe
Glucose (mg/dL)	>300	>300	>300
рН	7.25 to 7.30	7.00 to 7.24	<7.00
Bicarbonate (mmol/L)	15-18	10-14	<10


Outcomes Studied

Primary Outcome			
Operational Impact: ED LOS and ICU admissions in post-intervention period			
Sacandary	Outcomes		
Secondary	Outcomes		
Fidelity Impact	Safety Impact		
Confirming implementation and effectiveness while assessing impacts of the intervention	The frequency of hypoglycemic events requiring rescue dextrose		

SQuID Protocol

2L 0.9% NaCl bolus followed by 0.45% NaCl

@150 ml/hr

Administer insulin lispro via SQuID pathway

Check BG every
2 hours
Check BMP
every 4 hours

Initiate longacting insulin once AG <16

SQuID Protocol

Insulin Initiation and Titration			
Blood Glucose >250	1. Administer insulin lispro 0.2 units/kg subQ		
	2. Continue 0.45% NaCl at 150 ml/hr		
First Blood Glucose <250	1. Administer insulin lispro 0.1 units/kg subQ		
	2. Decrease 0.45% NaCl to 50 ml/hr until protocol is complete		
	3. Add D5W based on parameters below:		
	 BG 200-250: Start D5W at 100 ml/hr 		
	 BG 150-199: Start D5W at 150 ml/hr 		
	 BG 100-149: Start D5W at 200 ml/hr 		
	 BG <100: Start D5W at 250 ml/hr and notify provider 		

SQuID Protocol

D5W Titration and Hypoglycemia Management

D5W litration and Hypoglycemia Management		
Subsequent BG after D5W initiated	 Administer insulin lispro: 0.1 units/kg After D5W is initiated, titrate D5W q2h with each blood glucose check as follows: BG >250:↓D5W rate by 50 ml/hr BG 200-250: <-> D5W at the same rate BG 150-199: ↑D5W rate by 50 ml/hr BG 100-149: ↑ D5W rate by 100 ml/hr BG <100: ↑ D5W to 250 ml/hr 	
BG <70	 Assess Patient: Able to take PO: 15g of fast acting carbohydrate Unable to take PO/IV access: D10W 250 ml over 15 min Unable to take PO/NO IV access: 1 mg glucagon IM Recheck BG q15min and repeat protocol until BG >100 	

Baseline Demographics

	Post-Intervention		Historical Controls	
	SQuID (n=78)	Traditional (n=99)	Pre-intervention (n=163)	Pre-COVID (n=161)
Age (years)	41.5 (30.3-52.0)	55.0 (40.5-66.5)	49.0 (30.5-61.0)	48.0 (31.0-61.0)
ED Disposition				
Admit	69 (88.5)	93 (93.9)	146 (89.6)	133 (82.6)
Discharge	9 (11.5)	0 (0.0)	8 (4.9)	10 (6.2)
Other	0 (0.0)	6 (6.1)	9 (5.5)	18 (11.2)

^{*}Data reported as median (IQR) or n (%)

Baseline Emergency Severity Index (ESI)

Emergency Severity Index (ESI)				
	Post-Intervention		Historical Controls	
	SQuID (n=78)	Traditional (n=99)	Pre-intervention (n=163)	Pre-COVID (n=161)
1	0 (0.0)	4 (4.0)	5 (3.1)	2 (1.2)
2	55 (70.5)	72 (72.7)	125 (76.7)	127 (78.9)
3	23 (29.5)	22 (22.2)	31 (19.0)	31 (19.3)
4	0 (0.0)	0 (0.0)	2 (1.2)	0 (0.0)
5	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

^{*}Data reported as n (%)

Results

Value	SQuID (n=73)	Traditional (n=28)	Pre-intervention (n=163)	Pre-COVID (n=161)
Glucose tests/hr	1.0 (0.8-1.1)	1.0 (0.8-1.1)	1.0 (0.9-1.2)	1.0 (0.8-1.1)
Rescue dextrose	2 (2.7)	1 (3.6)	2 (2.3)	0 (0.0)
ED LOS (hrs)	8.9 (6.5-11.5)	11.9 (9.6-18.6)	10.3 (7.7-12.9)	12.5 (8.7-19.3)

^{*}Data are reported as n (%) or median (IQR)

Study Conclusion

Adherence to proper glucose monitoring remained unchanged between the two groups

Risks of hypoglycemia and need for rescue dextrose was similar for both the SQuID and IV group

ED LOS decreased compared to the traditional cohort by 3 hours, 1.4 hours, and 3.6 hours for the postintervention, preintervention, and pre-COVID periods, respectively

The SQuID protocol observed trended toward a decrease in ICU admission

Griffey, et al. (2023)

Limitations:

- Single-center trial
- High-volume ED with limited ICU bed
- Total patient/institution cost was not studied
- Provided relatively limited baseline information
- Utilized dedicated inpatient observation units

Strengths:

- Prospective trial with included retrospective cohort
- Defined algorithm to prevent variability based on provider clinical judgment
- Showed feasibility in caring for these patients on non-ICU floors
- Demonstrated that patient safety/monitoring was not reduced while using this protocol
- Provided comparisons from multiple time points

DKA Outcomes

Outcome	SQuID I		
ED LOS	↓		
ICU Admissions	↓		
Time to DKA Resolution	Not measured		
Hypoglycemia	←		

SQuID II (Griffey, et al. 2025)

Trial Design			
Prospective cohort study over 1 year in patients with mild to moderate DKA			
Intervention			
The SQuID protocol vs. traditional (IV insulin infusion) protocols			
Inclusion Criteria	Exclusion Criteria		
 Glucose >300 mg/dL Ketones >1.1 mmol/L Mild to moderate DKA 	 Diagnosis of severe DKA <18 years old Chronic comorbidities AMS 		

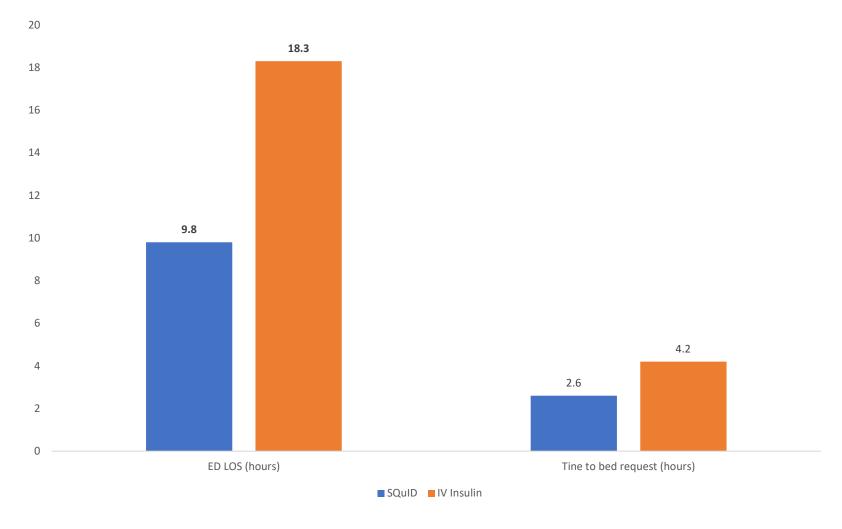
Outcomes Studies

Fidelity	Clinical Effectiveness	Operational Effectiveness	Safety
• Time from documented blood glucose ≤250 mg/dL to administration of dextrose containing fluid administration	 Time to anion gap closure of ≤16 Time on either IV or SQuID protocol 	 ED LOS Time to bed request ICU admission rate	 Episodes of hypoglycemic events (glucose <70 mg/dL) requiring dextrose rescue
 Time from anion gap closure to administration of glargine 			

Baseline Demographics

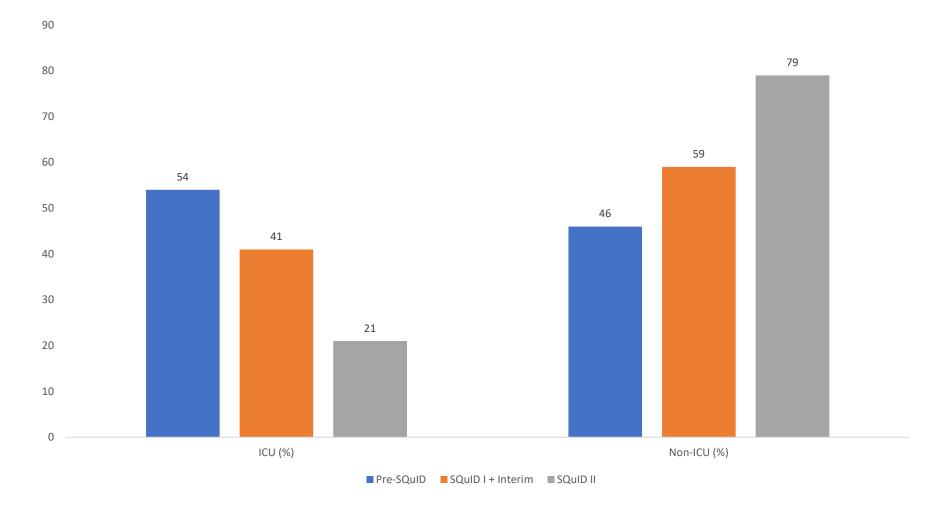
	SQuID (n=62)	Traditional (n=22)	P-value
Age (years)	42 (27,56)	52 (41, 59)	0.11
	ED Dispo	sition	
Discharged From ED	6 (10)	1 (5)	
Admitted to Observation Floor	43 (69)	1 (5)	<0.001
Admitted to Medical Floor	13 (21)	2 (9)	40.001
Admitted to ICU	0 (0)	18 (82)	
Hospital LOS (h)	47 (28, 86)	102 (69, 161)	0.001

^{*}Data reported as median (IQR) or n (%)



Protocol Efficacy

Outcomes	SQuID vs. IV insulin	Median Difference (hr)	95% CI	P-value
Time to anion gap closure	Shorter with SQuID	-1.4	-3.5 to -0.7	0.04
Time on protocol	Shorter with SQuID	-10.3	-22.7 to -5.6	<0.001
Rescue dextrose administration	5 (8%) vs. 4 (18%)	10%	-3.1% to 10%	0.17



Operation Results

ICU Admissions

Study Conclusions

1.4 h shorter median time to AG closure

10.3 h shorter median time on protocol

Shorter ED LOS in the SQuID group: 9.8 h vs. 18.3 h

ICU admission rates decreased from 54% to 21% in SQuID II

Strengths and Limitations

Study Limitations:

- Single-center study
- Relatively small sample size
- Patients not randomized and provider decision to treat via SQuID versus admit to ICU
- Costs associated with either protocol not studied
- Utilized dedicated inpatient observation unit

Study Strengths:

- Prospective trial design
- Studied additional outcomes such as time to anion gap closure, time to bed request, total time on either protocol
- COVID-19 pandemic not a confounder in this study as it was in SQuID I
- Reinforces the use of subcutaneous insulin for low to moderate DKA
- Continued to show a decline in ICU admission with SQuID protocol

DKA Outcomes

Outcome	SQuID I	SQuID II	
ED LOS	\	\	
ICU Admissions	•	•	
Time to DKA Resolution	Not measured	Not measured	
Hypoglycemia	←		

Knowledge Check #3

A 45-year-old patient with T2DM presents to the ED with nausea and vomiting after not taking insulin for 2-3 days due to being on a work trip and forgetting his medications at home.

His pertinent labs are as follows:

BG: 345 mg/dL

pH 7.3

Bicarbonate: 15 mmol/L

Beta-hydroxybutyrate: 4 mmol/L

Mental status: alert

Knowledge Check #3

What regimen would you like to begin for this patient?

- a) insulin lispro at 0.2 units/kg subQ
- b) insulin regular at 0.05 units/kg/hr IV
- c) insulin regular at 0.1 units/kg/hr IV
- d) insulin regular 0.1 units/kg once IV

Pertinent Labs:

- BG: 345 mg/dL
- pH 7.3
- Bicarbonate: 15 mmol/L
- Beta-hydroxybutyrate: 4 mmol/L
- Mental status: alert

CRABI-DKA (2025)

Trial Design

Retrospective cohort study conducted at an academic Level 1 trauma center emergency department

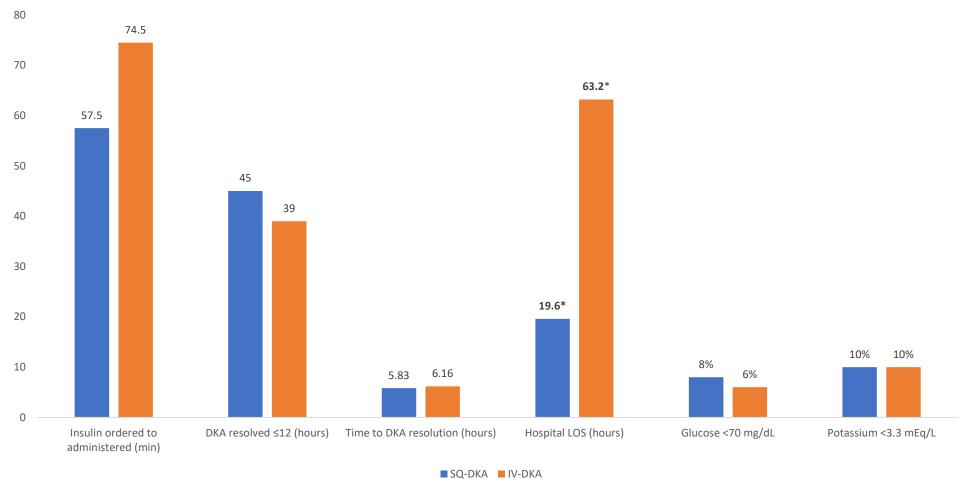
Intervention

SubQ insulin for DKA vs. IV insulin for DKA

Inclusion Criteria	Exclusion Criteria
 DKA diagnosis Glucose >250 mg/dL Bicarbonate > 10 mmol/L pH >7.0 	 <18 years old Euglycemic DKA (BG <250 mg/dl) Critically-ill Received high dose corticosteroids Body weight >120 kg

Outcomes Studied

Primary Outcome				
The percentage of individuals whose DKA resolved within 12 hours				
Secondary Outcomes				
Time to DKA resolution	Hospital length of stay			
Safety Endpoints				
 Percentage of individuals who experienced hypoglycemia 	 Percentage of individuals who experienced hypokalemia 			


Baseline Demographics

Characteristic	SQ-DKA	IV-DKA	P-value
Age (y)	32 (25-43)	40 (29-51)	0.083
Glucose (mg/dL)	440 (374-545)	471 (371-559)	0.75
Bicarbonate (mmol/L)	15 (12-16)	13 (11-16)	0.25
Anion gap (mEq/L)	18 (16-20)	17 (15-18)	0.048
рН	7.3 (7.23-7.33)	7.26 (7.25-7.27)	0.34
BHB (mmol/L)	7.3 (5.0-9.0)	7.2 (5.2-8.4)	0.97
HbA1C (%)	11.5 (10.4-13.3)	11.2 (10-12.8)	0.57

^{*}Values reported as median (IQR)

Results

^{*}Indicate statistical significance

Study Conclusions

The time from ordering to administering was trending short for subQ insulin vs. IV

The subQ protocol trended towards a faster resolution of DKA time

The hospital LOS was significantly shorter for the subQ protocol

Safety events were similar between both groups

Strengths and Limitations

Limitations:

- Retrospective and single-center trial
- Relatively small sample size
- Did not measure ICU admission rates between groups
- Patients treated in ED observation unit where they may have received more focused care

Strengths:

- Demonstrated efficacy of subQ insulin while showing no compromise in safety
- Provided information on both time to resolution and LOS
- Observed significantly lower LOS on average of 2 days shorter
- Provided example order set for subQ for easier replication

DKA Outcomes

Outcome	SQuID I	SQuID II	CRABI- DKA	
ED LOS	↓	\	↓	
ICU Admissions	↓	↓	↓	
Time to DKA Resolution	Not measured	Not measured	↓	
Hypoglycemia	←			

Stuhr, et al. (2023)

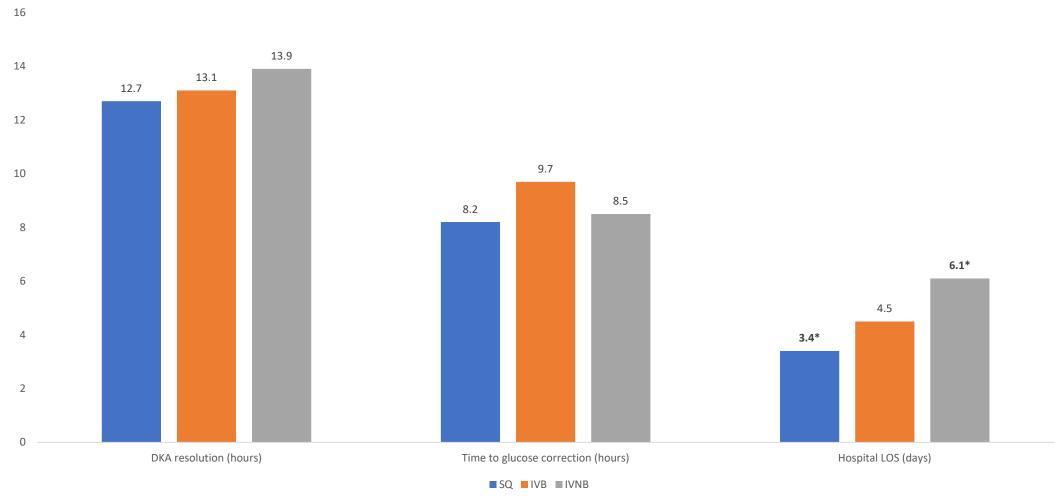
Trial Design			
Multicenter, retrospective cohort study			
Intervention			
SubQ insulin vs. IV insulin with an initial bolus and without an initial bolus			
Inclusion Criteria	Exclusion Criteria		
 ≥18 years old Primary diagnosis of DKA Mild to moderate severity 	 DKA unresolved prior to discharge Transitioned to IV insulin due to subQ failure Severe DKA ESRD Pregnancy/lactation 		

Outcomes Studied

Primary Outcome					
Time to DKA resolution					
Secondary Outcomes	Safety Outcomes				
 Time to resolution of hyperglycemia ICU LOS Hospital LOS DKA readmission within 30 days 	Incidence of hypoglycemia				

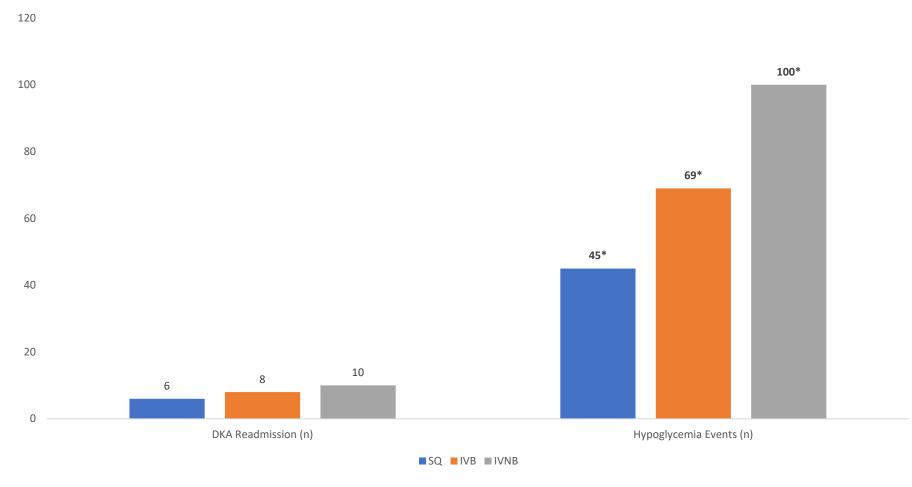
Baseline Characteristics

Characteristic	SQ (n=75)	IVB (n=62)	IVNB (n=120)	P-value
Age (mean), years	44.43	42.65	45.01	0.648
BMI (mean)	29.27	26.54	26.76	0.047
T1DM (%) T2DM (%)	48.0 48.0	63.9 31.1	46.7 48.3	0.220
A1c (%) <6.5& 6.6-10.0% 10.1-14% >14%	0.0 25.9 60.3 13.8	2.2 26.1 56.5 15.2	1.9 36.5 50.0 11.5	0.650



Baseline Laboratory Values

Lab Value	SQ (n=75)	IVB (n=62)	IVNB (n=120)	P-value
Blood glucose (mean), mg/dL	492.12	721.87	590.93	<0.001
рН	7.33	7.23	7.24	<0.001
Anion gap (mean)	20.87	25.10	25.50	<0.001
Lactate (mean), mmol/L	2.65	4.41	3.98	0.002
BHB (mean), mmol/L	3.58	3.89	3.84	0.450


Results

^{*}Indicate statistical significance

Results

^{*}Indicate statistical significance

Study Conclusions

Time to glucose correction similar between groups

Hospital LOS decreased when using subQ insulin protocol

Hypoglycemic events were significant lower in the subQ cohort DKA readmission was similar between groups

Strengths and Limitations

Limitations:

- Study not randomized
- Patients in the subQ were less sick at baseline
- Relatively small sample size
- Did not provide ICU data on subQ group

Strengths:

- Multicenter trial
- Provided data on DKA readmission
- Provided further safety data
- Robust baseline characteristics descriptions

DKA Outcomes

Outcome	SQuID I	SQuID II	CRABI- DKA	Stuhr (2023)
ED LOS	↓	↓	\	Not measured
Hospital LOS	Not measured	↓	\	
ICU Admissions	\	\	\	Not measured
Time to DKA Resolution	Not measured	Not measured	↓	←
Hypoglycemia	←	←	←	↓

Overall Conclusions

While DKA mortality has improved over the past century, costs have continued to rise

General management requires IV insulin, ICU admission, and frequent monitoring and nursing resources

The SQuID protocol is an alternative for mild DKA to reduce costs and ICU admissions

A 22-year-old non-toxic appearing woman with type 1 diabetes presents to the ED with nausea, vomiting, and abdominal pain after missing her insulin for 2 days.

Vitals:

HR: 142 bpm

BP: 118/76 mmHg

RR: 24 (Kussmaul respirations

noted)

Temp: 37.2°C

O2 sat: 98% RA

Alert and oriented

Labs:

BG: 410 mg/dL

pH: 7.15

Bicarbonate: 10 mmol/L

β-hydroxybutyrate: 4.5 mmol/L

K: 5.2 mEq/L

Based on this patient's presentation, how would you classify their severity?

- a) Mild DKA
- b) Moderate DKA
- c) Severe DKA

Labs:

BG: 410 mg/dL

pH: 7.15

Bicarbonate: 10 mmol/L

β-hydroxybutyrate: 4.5 mmol/L

K: 5.2 mEq/L

Given that this patient is in moderate DKA, what insulin regimen should be started?

- a) insulin lispro 0.1 units/kg subQ
- b) insulin regular 0.1 units/kg/hr IV
- c) insulin lispro 0.2 units/kg subQ

The patient has a potassium of 5.2 mEq/L, what would be the most appropriate potassium repletion strategy?

- a) No potassium repletion required at this time
- b) 10-20 mEq/L of potassium in each liter of fluid
- c) 40 mEq of potassium PO once

A subsequent blood glucose resulted at 205 mg/dL, what would be the dose of insulin given at this time?

- a) Hold dose of insulin until the next blood glucose check
- b) Insulin lispro 0.1 units/kg subQ
- c) Insulin lispro 0.2 units/kg subQ

A 46-year-old man with T1DM presents after being found at home confused and lethargic. Family reports poor insulin adherence

Vitals:

HR: 152

BP: 96/62

RR: 32 (deep and rapid)

Temp: 37.0°C

O2 sat: 95% RA

Labs:

BG: 560 mg/dL

pH: 6.95

Bicarbonate: 7 mmol/L

β-hydroxybutyrate: 6

mmol/L

K⁺: 3.7 mEq/L

Based on this patient's presentation, how would you classify their severity?

- a) Mild DKA
- b) Moderate DKA
- c) Severe DKA

Labs:

BG: 560 mg/dL

pH: 6.95

Bicarbonate: 7 mmol/L

β-hydroxybutyrate: 6

mmol/L

K⁺: 3.7 mEq/L

Given that this patient is in severe DKA, what insulin regimen should be started?

- a) Insulin lispro 0.1 units/kg subQ
- b) Insulin lispro 0.2 units/kg subQ
- c) Insulin regular 0.1 units/kg/hr IV

The patient has a potassium of 3.7 mEq/L, what would be the most appropriate potassium repletion strategy?

- a) No potassium repletion required at this time
- b) Replete potassium 10-20 mEq for each liter of fluid administered to maintain potassium between 4-5 mEq/L
- c) 20 mEq potassium PO once

References

- 1. American Diabetes Association Professional Practice Committee; 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 1 January 2024; 47 (Supplement 1): S20–S42. https://doi.org/10.2337/dc24-S002
- 2. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. *Phys Ther.* 2008;88(11):1322-1335. doi:10.2522/ptj.20080008
- 3. Dreschfeld J. The Bradshawe Lecture on Diabetic Coma. *Br Med J.* 1886;2(1338):358–363. doi:10.1136/bmj.2.1338.358
- 4. American Diabetes Association. The history of a wonderful thing we call insulin. Diabetes.org. Published July 1, 2019. Accessed October 1, 2025. https://diabetes.org/blog/history-wonderful-thing-we-call-insulin
- 5. Eledrisi MS, Elzouki AN. Management of Diabetic Ketoacidosis in Adults: A Narrative Review. *Saudi J Med Med Sci.* 2020;8(3):165-173. doi:10.4103/sjmms.sjmms 478 19
- 6. Guillermo E. Umpierrez, Georgia M. Davis, Nuha A. ElSayed, Gian Paolo Fadini, Rodolfo J. Galindo, Irl B. Hirsch, David C. Klonoff, Rozalina G. McCoy, Shivani Misra, Robert A. Gabbay, Raveendhara R. Bannuru, Ketan K. Dhatariya; Hyperglycemic Crises in Adults With Diabetes: A Consensus Report. *Diabetes Care* 25 July 2024; 47 (8): 1257–1275. https://doi.org/10.2337/dci24-0032
- 7. Virdi N, Poon Y, Abaniel R, Bergenstal RM. Prevalence, cost, and burden of diabetic ketoacidosis. *Diabetes Technol Ther*. 2023;25(S3):S-75–S-84. doi:10.1089/dia.2023.0149
- 8. Crane MA, Lam A, Ekanayake E, et al. Mortality Due to Hyperglycemic Crises in the US, 1999-2022. *JAMA*. 2024;331(5):440–442. doi:10.1001/jama.2023.26174
- 9. Dimpi Desai, Dhruv Mehta, Priyanka Mathias, Gopal Menon, Ulrich K. Schubart; Health Care Utilization and Burden of Diabetic Ketoacidosis in the U.S. Over the Past Decade: A Nationwide Analysis. *Diabetes Care* 1 August 2018; 41 (8): 1631–1638. https://doi.org/10.2337/dc17-1379
- 10. El-Remessy AB. Diabetic Ketoacidosis Management: Updates and Challenges for Specific Patient Population. *Endocrines*. 2022; 3(4):801-812. https://doi.org/10.3390/endocrines3040066

References

- 11. Everyday Health Editors. Diabetic ketoacidosis: symptoms, causes, and treatments. EverydayHealth.com. Published April 13, 2022. Accessed October 1, 2025. https://www.everydayhealth.com/diabetes/ketoacidosis/
- Dhatariya K, Mustafa O, Stathi D. Hyperglycemic Crises. [Updated 2025 Jun 10]. In: Feingold KR, Ahmed SF, Anawalt B, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279052/
- 13. Rodriguez Alvarez P, San Martin VT, Morey-Vargas OL. Hyperglycemic crises in adults: a look at the 2024 consensus report. *Cleveland Clin J Med*. 2025;92(3):152–158. doi:10.3949/ccjm.92a.24089
- 14. Griffey RT, Schneider RM, Girardi M, et al. The SQuID protocol (subcutaneous insulin in diabetic ketoacidosis): Impacts on ED operational metrics. *Acad Emerg Med*. 2023;30(8):800-808. doi:10.1111/acem.14685
- 15. Griffey RT, Schneider RM, Girardi M, et al. SQuID (subcutaneous insulin in diabetic ketoacidosis) II: Clinical and operational effectiveness. *Acad Emerg Med*. 2025;32(1):61-71. doi:10.1111/acem.15020
- 16. Ibarra F Jr, Cruz M, Chinnock B, Sunde C, Campagne D, Uller M. Evaluation of an Alternative Approach to Managing Diabetic Ketoacidosis: Combination Rapid-Acting and Basal Subcutaneous Insulin (CRABI-DKA). *Ann Pharmacother*. Published online May 20, 2025. doi:10.1177/10600280251331967
- 17. Stuhr K, LeeMaster R, Hickman AW, Reachi B, Pace W, Meek C. Subcutaneous Insulin Versus Traditional Intravenous Insulin Infusion in Treatment of Mild to Moderate Diabetic Ketoacidosis. *J Emerg Med*. 2023;65(3):e221-e228. doi:10.1016/j.jemermed.2023.06.004

Questions?

Email: Thomas.Szwajnos@aah.org

Tom Szwajnos, PharmD, MS