CAT-astrophe or Cure? Clinical Crossroads in Cancer Associated Thrombosis

Allison Yang, PharmD; Disha Patel, PharmD PGY2 Oncology Pharmacy Residents Atrium Health Wake Forest Baptist Medical Center October 14, 2025

Disclosure

The planners and speakers have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Presenters:

- Allison Yang, PharmD
- Disha Patel, PharmD

Presentation Mentor:

Christopher Parish, PharmD, BCOP

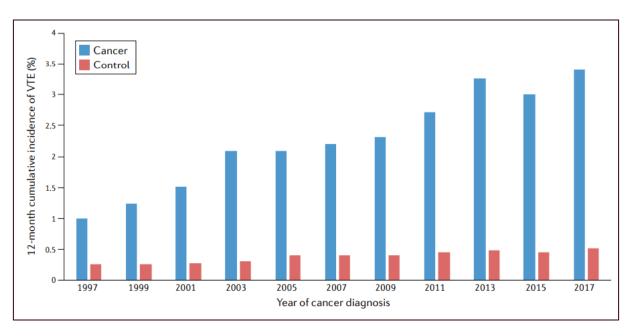
Objectives

- Recall the background of pathophysiology and risk factors of thromboembolic events in oncology
- Outline the key literature influencing changes in practice surrounding cancer associated VTE
- Recognize anticoagulation considerations for special populations within oncology
- Identify strategies to safely implement the 2025 NCCN guidelines into practice

Roadmap

Background

Crossroad #1: Initial Agent for Outpatient Prophylaxis


Crossroad #2: Attenuated Dosing for DOACs

Crossroad #3: Cancer Specific Pharmacokinetic Variability

Crossroad #4: Anticoagulation in Thrombocytopenia

Clinical Application

Cancer Associated Venous Thromboembolism

- Accounts for approximately 20% of VTE
- Mortality rate of 45.3 per 100 person-years

Components of Virchow's Triad

Endothelial injury

- Chemotherapy
- Surgery
- Radiotherapy

Venous stasis

- Compression by the tumor
- Immobility
- Endothelial tumor growth

Coagulation activation

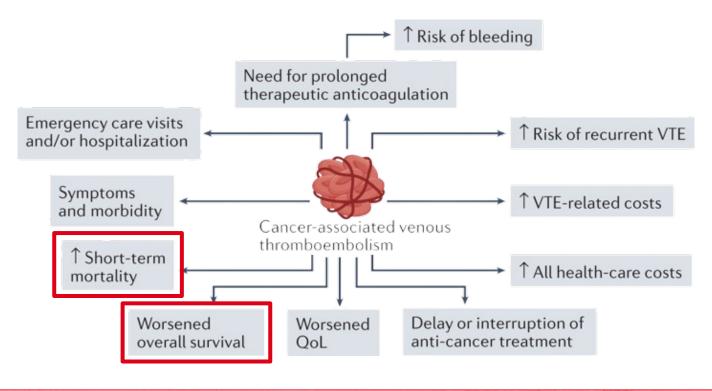
- Tumor expressed procoagulants
- Circulating tumor cells

Treatments with High -Risk for Thrombosis

Platinum-based Agents

Anthracyclines

Tamoxifen


Immunomodulatory Agents

EGFR-targeted Antibodies

Tyrosine kinase inhibitors

CDK4/6 Inhibitors

CAT Consequences

Self-Assessment Question #1

WM is an 80-year-old M who presented to the emergency room for shortness of breath and unilateral swelling of his leg. An ultrasound displayed an acute DVT, and he was started on a heparin drip.

PMH: CAD, HTN, diabetes, Stage IIIa adenocarcinoma of the lung

Active Chemotherapy: cisplatin + oxaliplatin

Medications: aspirin 81mg daily, lisinopril 10 mg daily, metformin 500 mg twice daily

Select all the risk factors that the patient has for developing cancer associated thrombosis.

- A. Age
- B. Platinum-based chemotherapy
- C. Cardiac history
- D. Oncologic history

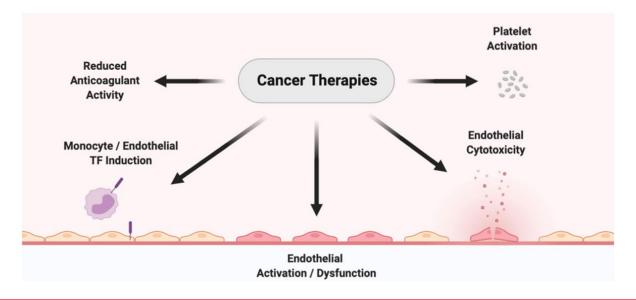
NCCN 2025 Guideline Crossroads to Discuss

Initial Agent for Outpatient Prophylaxis

Attenuated Dosing for DOACs

Cancer Specific Pharmacokinetic Variability

Anticoagulation in Thrombocytopenia


01

Crossroad #1

Initial Agent for Outpatient Prophylaxis

Thromboprophylaxis During Chemotherapy

- All hospitalized cancer patients required to start pharmacologic thromboprophylaxis
- Role of outpatient thromboprophylaxis is less certain

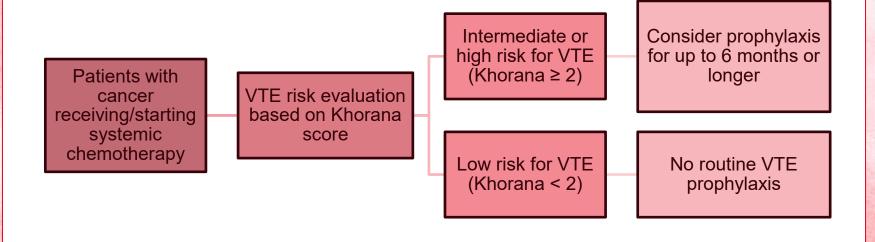
Populations at High Risk

Adults with diagnosis of cancer hospitalized for medical or surgical care

Received VTE prophylaxis during hospitalization

Any outpatients at risk based on VTE risk assessment

Other Thromboembolism Risk Scores


IMPEDE Score	Score
Positive Factors	
Central venous catheter/Tunneled central line Pelvic, hip, or femur fracture Obesity (BMI ≥ 25) Previous VTE Immunomodulatory drug Erythropoiesis-stimulating agent Dexamethasone ≤ 160 mg/month Dexamethasone > 160 mg/month Doxorubicin or multiagent chemotherapy	+2 +4 +1 +5 +4 +1 +2 +4 +3
Negative Factors	
Asian/Pacific Islander Prophylactic LMWH or aspirin Therapeutic LMWH or warfarin	-3 -3 -4

SAVED Score	Score
Surgery within 90 days	+2
Asian race	-3
VTE history	+3
Age ≥ 80 years	+1
Dexamethasone (regimen dose) • Standard dose (120-160 mg/cycle) • High dose (> 160 mg/cycle)	+1 +2

Khorana Score

Patient characteristic	Score	Risk Score & Incidence
Cancer site: Stomach, pancreas Lung, lymphoma, gynecologic, bladder, testicular	2	Score 0 low risk (0.3-1.5%)
Prechemotherapy platelet count ≥ 350/μL	1	Score 1-2
Hemoglobin < 10 g/dL or use of red cell growth factors	1	intermediate risk (2.0-4.8%)
Prechemotherapy leukocyte count > 11/μL	1	Score 3+ high risk (6.7-12.9%)
BMI \geq 35 kg/m ²	1	

Evaluation for VTE Prophylaxis

Literature Review - LMWH

Study	Tumor Type(s)	Intervention	Symptomatic VTE	Major Bleeding
PROTECHT (2009)	Lung, GI, pancreatic, breast, ovarian, or head and neck cancers	 Nadroparin for 4 months (n = 769) Placebo (n = 381) 	2% vs 3.9% (p = 0.02)	0.7% vs 0% (p = 0.18)
FRAGEM (2012)	Advanced pancreatic cancer	 Dalteparin for 12 weeks (n = 60) No prophylaxis (n = 63) 	3.4% vs 23% (p = 0.002)	-
CONKO-004 (2015)	Advanced pancreatic cancer	 Enoxaparin 1 mg/kg daily for 3 months then 40 mg daily (n = 160) No prophylaxis (n = 152) 	1.3% vs 9.9% (p = 0.01)	4.4% vs 3.3% (p = 1)

Literature Review - DOACs

Study	Tumor Type(s)	Treatment	Primary Endpoint	Major Bleeding
CASSINI (2018)	Solid tumors or lymphoma	 Rivaroxaban 10 mg daily for 6 months (n = 420) Placebo (n = 421) 	Composite of symptomatic or asymptomatic DVT or PE 6% vs 8.8% (p = 0.1)	2% vs 1% (p = 0.26)
AVERT (2018)	All newly diagnosed cancers	 Apixaban 2.5 mg twice daily for 6 months (n = 288) Placebo (n = 275) 	Documented VTE 4.2% vs 10.2% (p < 0.001)	3.5% vs 1.8% (p > 0.05)

VTE Prophylaxis Options for Ambulatory Oncology

Agent	Standard Dosing	Renal Dose	Other Dose Modifications
Apixaban	2.5 mg PO twice daily	Caution if CrCl < 30 mL/min	Avoid if platelet count < 50,000/μL Avoid if weight < 40 kg
Rivaroxaban	10 mg PO daily	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/µL
Dalteparin	200 units/kg subQ daily x 1 month, then 150 mg/kg subQ daily x 2 months	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/μL
Enoxaparin	1 mg/kg subQ daily x 3 months, then 40 mg subQ daily	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/μL

Risk Factors for Thrombosis in Surgical Oncology

Undergoing surgery for gastrointestinal malignancies

Previous episode of VTE

Anesthesia time > 2 hours

Perioperative bed rest ≥ 4 days

Advanced-stage disease

Age > 60 years

VTE Prophylaxis Guidelines for Surgical Oncology

Out-of-hospital primary VTE prophylaxis postoperatively following high-risk abdominal or pelvic cancer surgery is recommended

Are the prophylactic anticoagulation options and duration the same as ambulatory medical oncology patients?

Literature Review – LMWH

Study	Surgery	Intervention	VTE	Major Bleeding
Bergqvist, et al (2002)	Curative open surgery for abdominal or pelvic cancer	 Placebo for 21 days (n = 167) Enoxaparin 40 mg daily for 21 days (n = 165) 	During study period 12% vs 4.8% (p = 0.02) At 3 months 13.8% vs 5.5% (p = 0.01)	During study period 0% vs 0.4% (p > 0.99) At 3 months 0.4% vs 1.2% (p = 0.62)
Rasmussen, et al (2006)	Major abdominal surgery	 Dalteparin for 7 days (n = 178) Dalteparin for 28 days (n = 165) 	16.3% vs 7.3% (p = 0.012)	1.8% vs 0.5%

Literature Review – DOACs

Apixaban

Guntupalli, et al (2020)			
Design	Multicenter, open-blinded, randomized clinical trial		
Population	Suspected or confirmed gynecologic cancer undergoing surgery		
Intervention	 Apixaban 2.5 mg twice daily x 28 days (n = 204) Enoxaparin 40 mg daily x 28 days (n = 196) 		
Major Bleeding	0.5% vs 0.5% (p > 0.99)		
VTE Events	1% vs 1.5% (p = 0.68)		

Rivaroxaban

PROLAPS II (2022)			
Design	Randomized, double-blind, placebo- controlled, superiority trial		
Population	Colorectal cancer undergoing surgery		
Intervention	 Rivaroxaban 10 mg daily x 3 weeks (n = 287) Placebo x 3 weeks (n = 282) 		
Major Bleeding	0.7% vs 0%		
VTE Events	1% vs 3.9% (p = 0.032)		

VTE Prophylaxis Options for Surgical Oncology

Recommend for up to 4 weeks postoperative following surgery

Agent	Standard Dosing	Renal Dose	Other Dose Modifications
Apixaban	2.5 mg PO twice daily x 28 days	Caution if CrCl < 30 mL/min	Avoid if platelet count < 50,000/µL Avoid if weight < 40 kg
Rivaroxaban	10 mg PO daily x 21 days	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/μL
Dalteparin	5000 units subQ daily x 28 days	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/μL
Enoxaparin	40 mg subQ daily x 28 days	Avoid if CrCl < 30 mL/min	Avoid if platelet count < 50,000/µL

Self-Assessment Question #2

According to NCCN guidelines, what is a difference between VTE prophylaxis regimens between medical oncology and surgical oncology patients?

- A. Anticoagulant agent
- B. Dosing of DOACs
- C. Duration of anticoagulation
- D. No differences seen

Outpatient Prophylaxis Principles

	LMWH	Apixaban	Rivaroxaban
Medical Oncology			
Surgical Oncology		<u>•</u>	<u>(!</u>

Duration of Anticoagulation

Medical Oncology 6 weeks

Surgical Oncology: 4 weeks

Crossroad #2

Attenuated Dosing for DOACs

NCCN 2024 Guidelines

Duration

Duration should be at least 3 months or as long as active cancer or cancer therapy

Dosing of DOACs

Apixaban 10 mg PO every 12 hours for 7 days followed by 5 mg PO every 12 hours

Edoxaban 60 mg daily after initial therapy with LMWH or UFH for at least 5 days

Rivaroxaban 15 mg PO every 12 hours for 21 days followed by 20 mg daily

Prior Literature

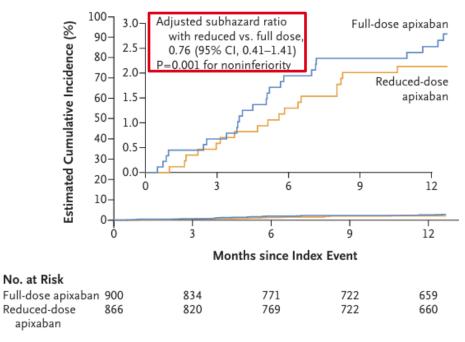
	Design	Population	Intervention	Recurrent VTE	Major Bleeding
AMPLIFY- EXT (2013)	Randomized Double-blind	Adult, symptomatic DVT or PE Treated for 6 to 12 months with standard anticoagulant therapy	 Apixaban 2.5 mg twice daily Apixaban 5 mg twice daily Placebo 	1.7% vs 1.7% vs 8.8% (95% CI, 4.9 to 9.1; p<0.001)	0.2% vs 0.1% vs 0.5%
RENOVE (2025)	Noninferiority Randomized Open-label	Adult with acute symptomatic thromboembolism Received 6-24 uninterrupted months of full-dose anticoagulation	 Reduced dose (apixaban 2.5 mg twice daily or rivaroxaban 10 mg daily) Full-dose (apixaban 5 mg twice daily or rivaroxaban 20 mg daily) 	2.2% vs 1.8% (HR 1.32, 95% CI 0.67 – 2.6)	9.9% vs 15.2% (HR 0.61, 95% CI 0.48 – 0.79)

Prior Literature

		Design	Population	Intervention	Recurrent VTE	Major Bleeding
E	MPLIFY- XT (013)	Randomized Double-blin	Adult, symptomatic DVT or PE Can extend dosing be us		(0.001)	0.2% vs 0.1% vs 0.5%
	ENOVE (025)	Noninferior Randomized Open-label	patients afte			9.9% vs 15.2% (HR 0.61, 95% CI 0.48 – 0.79)

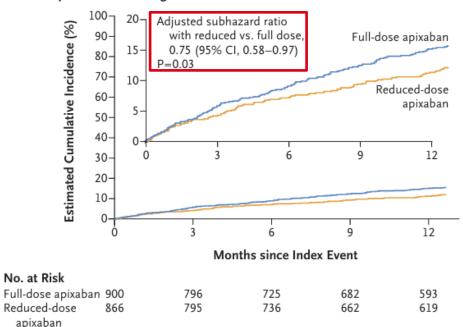
API-CAT

Extended Reduced-Dose Apixaban for Cancer-Associated Venous Thromboembolism						
Design	International, prospective, double-blind, noninferiority trial					
Inclusion	 Active cancer and venous thromboembolism Completed at least 6 months of treatment with treatment doses of LMWH, DOAC, or vitamin K antagonist 					
Exclusion	 Documented symptomatic recurrent thromboembolism Basal-cell or squamous-cell carcinoma of the skin, primary brain tumor or intra-cerebral metastasis Indication for long-term treatment with VKA or DOAC 					
Intervention	Apixaban 2.5 mg twice dailyApixaban 5 mg twice daily					
Primary Endpoint	Recurrent thromboembolism					
Key Secondary Endpoint	Clinically relevant bleeding					

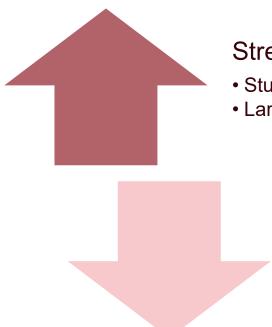

Baseline Characteristics

Characteristics	Reduced-Dose Apixaban (N = 866)	Full-Dose Apixaban (N = 900)
Age – year	67.2 ± 11	67.7 ± 11.4
Male – no (%)	375 (43.3)	391 (43.4)
PE with or without lower-limb proximal DVT – no (%)	669 (77.3)	665 (73.9)
Metastatic – no (%)	574 (66.3)	584 (64.9)
Site of cancer – no (%)		
Breast Prostate Colon or rectum Lung	199 (23) 77 (8.9) 123 (14.2) 99 (11.4)	202 (22.4) 87 (9.7) 148 (16.4) 100 (11.1)
Other	64 (7.4)	83 (9.2)

Primary Outcome


Reduced-Dose Group 18 patients (2.1%) vs Full-Dose Group 24 patients (2.8%)

A Recurrent Venous Thromboembolism


Key Secondary Outcome

B Clinically Relevant Bleeding

Reduced-Dose Group 102 patients (12.1%) vs Full-Dose Group 136 patients (15.6%)

Assessment

Strengths

- Study design
- Large sample size

Limitations

- Included only European countries
- Did not include highest-risk cancers
- Duration of study
- Noninferiority margin

Key Takeaway

Using a reduced dose of apixaban for extended anticoagulant therapy is a safe option for cancer-associated thromboembolism after completion of 6 months of full-dose therapy

NCCN 2025 Guidelines

Duration

Duration should be at least 3 months or as long as active cancer or cancer therapy

Dosing of DOACs

Apixaban 10 mg PO every 12 hours for 7 days followed by 5 mg PO every 12 hours^a

Edoxaban 60 mg daily after initial therapy with LMWH or UFH for at least 5 days

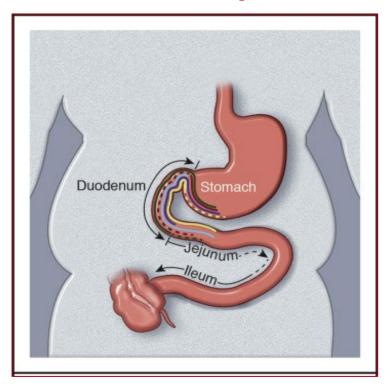
Rivaroxaban 15 mg PO every 12 hours for 21 days followed by 20 mg daily

^a After 6 months of therapy, consider lower dose apixaban after assessment of patient's risk for recurrent VTE and bleeding

Self-Assessment Question #3

AP is a 65 yo F with breast cancer who presents to follow-up with her hematologist today. She has been on apixaban 5 mg twice daily for her DVT for the past 6 months. She had recently found the API-CAT and wanted to discuss it with the pharmacist in clinic to see if she was appropriate for a lower dose of apixaban.

Most notably, she had recently experienced a fall that did not result in bleeding, and her family is concerned of her falling and having a bleed. As the pharmacist for the clinic, would you recommend dose attenuation?


- A. No, her breast cancer makes her too high risk for thrombosis
- B. No, she should stop anticoagulation due to her fall
- C. No, she did not receive lovenox which is the recommended treatment for DVT
- D. Yes, she completed at least 6 months of full anticoagulation

03

Crossroad #3

CancerSpecific Pharmacokinetic Variability

DOAC Absorption

- Warfarin, rivaroxaban, and dabigatran absorbed in the stomach
- Apixaban and edoxaban absorbed in the distal small bowel and proximal colon

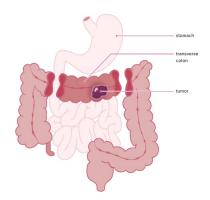
Martin KA, et al. Am J Med. 2017.

DOAC: direct oral anticoagulant

Therapeutic DOAC Considerations in GI Surgery

DOACs are primarily absorbed in stomach and small bowel


- Anatomic changes from GI surgeries can affect drug absorption and bioavailability
 - Motility and transit time of drugs can increase OR decrease
- Alternate routes of administration may also impact drug absorption, bioavailability, and stability
 - Important for patients requiring enteral feeding tubes


GI Oncologic Surgical Procedures

Total or partial gastrectomy

Distal resection or short bowel syndrome

Colectomy

Surgical Procedures and DOAC Absorption

Surgical Procedure	Apixaban	Rivaroxaban	Dabigatran	Edoxaban
Total or partial gastrectomy	Possibly reduced or not impacted	Possibly reduced or not impacted	Possibly reduced	Possibly reduced
Distal resection or short bowel syndrome	Possibly reduced	Not impacted	Possibly reduced	Not impacted
Colectomy	Possibly reduced	Not impacted	Not impacted	Not impacted

DOAC Alternate Routes of Administration

Enteral Feeding Tube Administration (NG, NJ, ND, G, J, GJ -tubes)			
DOAC	Suspension vehicle/volume	Stability	Comments
Apixaban	Water or D5W (60 mL)	4 hrs	Bioavailability is reduced if administered distal to stomach (ND or J -tube)
Rivaroxaban	Water (50 mL)	4 hrs	 15 mg and 20 mg tablets require enteral feeding following administration 2.5 mg and 10 mg tablets can be administered without food Absorption is reduced if administered distal to stomach (ND or J -tube)
Dabigatran	Do not administer through enteral feeding tube		
Edoxaban	Water (2-3 oz)	Unknown	Administer immediately

Nasogastric (NG), Nasojejunal (NJ), Nasoduodenal (ND), Gastrostomy (G), Jejunostomy (J), Gastrojejunostomy (GJ)

DOAC Drug Level Monitoring

DOAC	Effect on Drug Level After Surgery	Recommendations
Apixaban	Likely to remain in therapeutic range	Due to uncertainty and limited
Rivaroxaban	Less likely to remain in therapeutic range	available information for some of these agents, it is recommended to consider obtaining drug levels post-
Dabigatran	Below therapeutic range	
Edoxaban	Likely to remain in therapeutic range	surgery

Self-Assessment Question #4

Patient XY is a 56-year-old male with grade I gastric cancer. PMH includes hypertension and chronic jejunostomy tube.

They are D2 post-op partial gastrectomy.

Which anticoagulant would be appropriate for patient XY based on this information?

- A. Apixaban
- B. Rivaroxaban
- C. Enoxaparin
- D. Fondaparinux

Therapeutic Anticoagulant Preference in Gastric Cancer

LMWH

- Preferred in patients with gastric or gastroesophageal lesions
- Use in caution with decreased renal function (CrCl < 30 mL/min)
- Difficulty with PO intake or frequent nausea/vomiting

DOACs

- Preferred in patients without gastric or gastroesophageal lesions (increased risk for hemorrhage)
- Use in caution with decreased renal function (CrCl < 30mL/min)
- Use in caution with liver disease
- Consider drug interactions
- Consider drug absorption

GI Cancer Representation in Clinical Trials

CLOT	HOKUSAI	SELECT-D	CARVAGGIO
2003	2017	2018	2020
LMWH vs Warfarin	LMWH vs Edoxaban	LMWH vs Rivaroxaban	LMWH vs Apixaban
None listed	5.2% (54/1046) Upper GI	2.7% (11/406) Gastric 7.4% (30/406) Upper GI	4.7% (54/1155) Upper GI

Low representation of patients with gastro-intestinal (GI) cancers.

04

Crossroad #4

Anticoagulation in Thrombocytopenia

Thrombocytopenia

- Thrombocytopenia = platelet count < 150,000/μL
 - Anticoagulation is generally safe with platelet count ≥ 50,000/µL
 - Anticoagulation is generally held with platelet count < 25,000/µL
- Common complications increasing bleed risk
 - Reduced platelet counts from chemotherapy
 - Certain cancers have a higher bleed risk
 - Leukemia, brain tumors

Platelet < 100,000

 Threshold for intracranial hemorrhage and major traumaassociated bleeds

Platelet < 80,000

• 2 -4 fold higher odds for major or fatal bleeding

Platelet < 50,000

 Threshold for major surgery and GI bleeds

Platelet < 10,000

 Associated with significant bleeding in hematologic malignancies

Management Strategies

High risk for recurrent thromboembolism

- Continue therapeutic anticoagulation
 - Consider IVC filter placement in unable to continue therapeutic anticoagulation
- Maintain platelet count > 50,000/µL (platelet transfusions)

Low risk for recurrent thromboembolism

- Lower-dose anticoagulation with Enoxaparin with platelet count < 50,000/µL*
 - DOACs generally not recommended for < 50,000/µL
- More frequent monitoring for VTE if anticoagulation needs to be stopped

^{*}Enoxaparin dosing strategies outlined in next slide

Enoxaparin Dose Modifications

Platelet Count	Dose Adjustment	Suggested Dose of Enoxaparin	Alternative Once-Daily Dosing Regimen
> 50,000/µL	Full-dose enoxaparin	1 mg/kg twice daily	1.5 mg/kg daily
25,000 - 50,000/μL	Half-dose enoxaparin	0.5 mg/kg twice daily	-
< 25,000/µL	Temporarily hold enoxaparin		

Enoxaparin Literature Review

Study	Comparison	Outcomes	Conclusion
Mantha, et al (2017)	 Full dose enoxaparin at platelet count > 50,000/mcL Half dose enoxaparin at platelet count of 25,000–50,000/mcL Hold enoxaparin at platelet count < 25,000 	No recurrent VTE events or major bleeding episodes when the anticoagulant dose was reduced or held.	Validation of current guideline practices
Vichaidit, et al (2025)	 Recommended enoxaparin dose (n=169) Lower than recommended enoxaparin dose (n=60) 	 2.4% vs 5% recurrent VTE with full dose vs half dose 4.1% vs 1.7% bleeding events with full dose vs half dose 	Reduced-dose enoxaparin had a higher risk of recurrent VTE and lower bleeding risk

Clinical Controversy

Full-dose anticoagulation with transfusion support to maintain platelet goal

Reduced-dose enoxaparin or temporary discontinuation of anticoagulation

Bannow et al Systematic Review

Management of anticoagulation for cancer-associated thrombosis in patients w	rith
thrombocytopenia: A systematic review	

Study design	Systematic review of the literature (N=121)
Population	 Included studies that reported recurrent venous thromboembolism (VTE) and major bleeding complications among patients treated with the two most common management strategies: therapeutic anticoagulation with platelet transfusion support and dose-modified anticoagulation for periods when the platelet count is <50 × 109/L.
Outcomes	 27% of patients, regardless of their treatment strategy, experienced recurrent VTE 13% of anticoagulated patients (15% of all patients) experienced a major bleeding episode

Key takeaway: Heightened risk of recurrent VTE in cancer-associated thrombosis (CAT) patients despite the thrombocytopenia. Neither management strategy was supported with this study.

TROVE

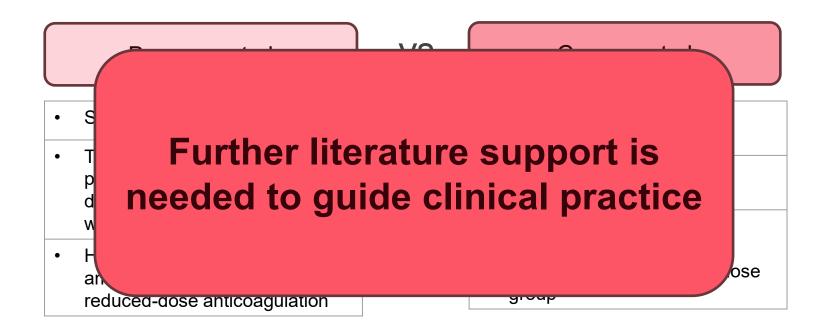
Anticoagulation in cancer-associated thromboembolism with thrombocytopenia: a prospective, multicenter cohort study			
Study design	Prospective, multi-center, cohort study (N=121)		
Population	75 (62%) patients were treated with full-dose anticoagulation and 33 (27%) patients with modified-dose anticoagulation		
Outcomes	 The median platelet count was higher in patients who were initially started on full-dose anticoagulation, with a median of 65 000/µL compared with 37 000/µL in the modified-dose anticoagulation cohort (P < .001) In patients who initially received full-dose anticoagulation, the cumulative incidence of major hemorrhage at 60 days was 12.8% (95% CI, 4.9-20.8) compared with 6.6% (95% CI, 2.4-15.7) in the modified-dose anticoagulation group 4 recurrent VTEs occurred in patients who initially received full-dose anticoagulation and 1 occurred in a patient who did not receive anticoagulation 		
Key takeaway: In select patients with cancer who develop VTE in the setting of thrombocytopenia, modified-dose anticoagulation was well tolerated with a low rate of recurrent VTE			

Carney, et al. Blood Adv. 2021.

VTE: venous thromboembolism

Varying Literature Support Summary

Bannow, et al


- Systematic review
- Therapeutic anticoagulation with platelet transfusion support vs dose-reduced anticoagulation when platelet count is <50,000
- Higher risk of recurrent VTE among patients receiving reduced-dose anticoagulation

VS

Carney, et al

- Prospective, multicenter, observational study
- Full dose vs reduced dose anticoagulation
- Higher rates of major hemorrhagic events and recurrent VTEs in the full-dose group

Varying Literature Support Summary

Self-Assessment Question #5

Patient LJ is a 74-year-old female currently admitted for a severe COVID infection. She has a past medical history of advanced stage non-small cell lung cancer with metastasis to the brain and bilateral PEs (managed by long-term enoxaparin 1 mg/kg twice daily).

WBC =
$$12$$
, $Hgb = 9.8$, $PIt = 32$

The team reaches out about how to manage her anticoagulation while she's thrombocytopenic. Which of the following options can be considered? (select all that apply)

- A. Stop the enoxaparin and switch to a DOAC
- B. Discuss platelet goals with the team and maintain that goal with platelet transfusions while continuing her enoxaparin
- C. Hold enoxaparin since platelet count is < 50,000
- D. Discuss reducing enoxaparin dose to 0.5 mg/kg twice daily

05 Implementation in **Practice**

Principles for Anticoagulation

Prophylaxis

Treatment

Key Considerations for Prophylaxis

Malignancy

Cancer type & site

Active malignancy?

Undergoing surgery

Ongoing treatment

Anticoagulant

Dosing

Duration

Affordability

Patient-Specific Factors

Risk of recurrent VTE

Bleeding risk

Patient preference

Key Considerations for Treatment

Malignancy

Cancer type & site

Anticoagulant

Dosing

Duration

Patient-Specific Factors

Risk of recurrent VTE

Bleeding risk

Patient preference

Take Home Points

- Cancer patients are at a higher risk of developing venous thromboembolism
- Prophylaxis is used in patients at high-risk for VTE while undergoing chemotherapy or post-operatively
- DOAC treatment can be extended beyond 6 months at a lower dose
- Utilizing LMWH is preferred in patients with gastric cancer
- Consider dose reducing enoxaparin in patients with thrombocytopenia

References

Stein PD, Beemath A, Meyers FA, Skaf E, Sanchez J, Olson RE. Incidence of venous thromboembolism in patients hospitalized with cancer. *Am J Med*. 2006;119(1):60-68. doi:10.1016/j.amjmed.2005.06.058

Khorana AA, Mackman N, Falanga A, et al. Cancer-associated venous thromboembolism. *Nat Rev Dis Primers*. 2022;8(1):11. Published 2022 Feb 17. doi:10.1038/s41572-022-00336-v

Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. *J Thromb Haemost*. 2007;5(3):632-634. doi:10.1111/j.1538-7836.2007.02374.x

Grover SP, Hisada YM, Kasthuri RS, Reeves BN, Mackman N. Cancer Therapy-Associated Thrombosis. *Arterioscler Thromb Vasc Biol.* 2021;41(4):1291-1305. doi:10.1161/ATVBAHA.120.314378

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Cancer-Associated Venous Thromboembolic Disease. Version 5,2025

Streiff MB, Holmstrom B, Angelini D, et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc Netw.* 2024;22(7):483-506. doi:10.6004/jnccn.2024.0046

Agnelli G, Gussoni G, Bianchini C, et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: a randomised, placebo-controlled, double-blind study. *Lancet Oncol.* 2009;10(10):943-949. doi:10.1016/S1470-2045(09)70232-3

Maraveyas A, Waters J, Roy R, et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. *Eur J Cancer*. 2012;48(9):1283-1292. doi:10.1016/j.ejca.2011.10.017

Pelzer U, Opitz B, Deutschinoff G, et al. Efficacy of Prophylactic Low-Molecular Weight Heparin for Ambulatory Patients With Advanced Pancreatic Cancer: Outcomes From the CONKO-004 Trial. *J Clin Oncol.* 2015;33(18):2028-2034. doi:10.1200/JCO.2014.55.1481

Khorana AA, Soff GA, Kakkar AK, et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. *N Engl J Med*. 2019;380(8):720-728. doi:10.1056/NEJMoa1814630

Carrier M, Abou-Nassar K, Mallick R, et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. *N Engl J Med*. 2019:380(8):711-719. doi:10.1056/NEJMoa1814468

Rasmussen MS, Jorgensen LN, Wille-Jørgensen P, et al. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients undergoing major abdominal surgery: a multicenter randomized open-label study. *J Thromb Haemost*. 2006;4(11):2384-2390. doi:10.1111/j.1538-7836.2006.02153.x

Bergqvist D, Agnelli G, Cohen AT, et al. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. *N Engl J Med*. 2002;346(13):975-980. doi:10.1056/NEJMoa012385

Guntupalli SR, Brennecke A, Behbakht K, et al. Safety and Efficacy of Apixaban vs Enoxaparin for Preventing Postoperative Venous Thromboembolism in Women Undergoing Surgery for Gynecologic Malignant Neoplasm: A Randomized Clinical Trial. *JAMA Netw Open*. 2020;3(6):e2074 I0. Published 2020 Jun 1. doi:10.1001/jamanetworkopen.2020.74 I0

Becattini C, Pace U, Pirozzi F, et al. Rivaroxaban vs placebo for extended antithrombotic prophylaxis after laparoscopic surgery for colorectal cancer. *Blood*. 2022;140(8):900-908. doi:10.1182/blood.2022015796

Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799-808. doi:10.1056/NEJ Moa1302507

Couturaud F, Schmidt J, Sanchez O, et al. Extended treatment of venous thromboembolism with reduced-dose versus full-dose direct oral anticoagulants in patients at high risk of recurrence: a non-inferiority, multicentre, randomised, open-label, blinded endpoint trial. *Lancet*. 2025;405(10480):725-735. doi:10.1016/S0140-6736(24)02842-3

References

Mahé I, Carrier M, Mayeur D, et al. Extended Reduced-Dose Apixaban for Cancer-Associated Venous Thromboembolism. *N Engl J Med.* 2025;392(14):1363-1373. doi:10.1056/NEJMoa2416112

Martin KA, Lee CR, Farrell TM, Moll S. Oral Anticoagulant Use After Bariatric Surgery: A Literature Review and Clinical Guidance. *Am J Med*. 2017;130(5):517-524. doi:10.1016/j.amjmed.2016.12.033

Agnelli G, Becattini C, Meyer G, et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. *N Engl J Med.* 2020;382(17):1599-1607. doi:10.1056/NEJMoa1915103

Lee AY, Levine MN, Baker RI, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. *N Engl J Med*. 2003;349(2):146-153. doi:10.1056/NEJMoa025313

Young AM, Marshall A, Thirlwall J, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). *J Clin Oncol.* 2018;36(20):2017-2023. doi:10.1200/JCO.2018.78.8034

Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. *N Engl J Med.* 2018;378(7):615-624. doi:10.1056/NEJMoa1711948

Hsu C, Patell R, Zwicker JI. The prevalence of thrombocytopenia in patients with acute cancer-associated thrombosis. *Blood Adv.* 2023;7(17):4721-4727. doi:10.1182/bloodadvances.2022008644

Escobar A, Salem AM, Dickson K, et al. Anticoagulation and bleeding in the cancer patient. Support Care Cancer. 2022;30(10):8547-8557. doi:10.1007/s00520-022-07136-w

Mantha S, Laube E, Miao Y, et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. *J Thromb Thrombolysis*. 2017;43(2):166-171. doi:10.1007/s11239-016-1429-1

Vichaidit K, Chantrathammachart P, Niparuck P, Puawilai T, Angchaisuksiri P, Boonyawat K. Reduced- versus full-dose anticoagulants for the extended treatment of cancer-associated venous thromboembolism in Thai patients. *Res Pract Thromb Haemost.* 2024;9(1):102643. Published 2024 Nov 26. doi:10.1016/j.rpth.2024.102643

Samuelson Bannow BR, Lee AYY, Khorana AA, et al. Management of anticoagulation for cancerassociated thrombosis in patients with thrombocytopenia: A systematic review. *Res Pract Thromb Haemost*. 2018;2(4):664-669. Published 2018 Jun 19. doi:10.1002/rth2.12111

Carney BJ, Wang TF, Ren S, et al. Anticoagulation in cancer-associated thromboembolism with thrombocytopenia: a prospective, multicenter cohort study. *Blood Adv.* 2021;5(24):5546-5553. doi:10.1182/bloodadvances.2021005966

Questions?

Allison Yang, PharmD | allison.yang@advocatehealth.org

Disha Patel, PharmD | disha.patel2@advocatehealth.org

CAT-astrophe or Cure? Clinical Crossroads in Cancer Associated Thrombosis

Allison Yang, PharmD; Disha Patel, PharmD PGY2 Oncology Pharmacy Residents Atrium Health Wake Forest Baptist Medical Center October 14, 2025