

Management of chemotherapy-induced thrombocytopenia

Itzanami Osorio, PharmD., MBA, PGY-1 Pharmacy Resident, Advocate Lutheran General Hospital

Disclosures

The planner(s) and speaker(s) have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Learning Objectives

At the end of this session, learners should be able to:

- Recognize chemotherapy-induced thrombocytopenia (CIT) and risk factors associated with CIT
- Identify chemotherapies associated with CIT
- Outline current recommendations for the management of CIT
- Select a therapy plan for an example patient case dealing with CIT

Outline

- 1. Background
- 2. Guideline Recommendations
- 3. Review of agents
- 4. Literature Review
- 5. Patient Case
- 6. Future

Abbreviation Key

AABB- American Association of Blood **Banks** ALL- acute lymphoblastic leukemia ALT- alanine aminotransferase AML- acute myeloid leukemia ANC- absolute neutrophil count ASA- aspirin **ASCO- American Society** of Clinical Oncology AST- aspartate aminotransferase AUC- area under the curve BCRP- breast cancer

resistance protein

BP- blood pressure

BMI- body mass index

BPM- beats per minute

BID-twice a day

CBC- complete blood count CHL- Classic Hodgkin lymphoma CIT- chemotherapy-induced thrombocytopenia CRC- colorectal cancer CTCAE- Common Terminology Criteria for Adverse Events DDAbs- drug-dependent antibodies DI- drug interaction DIT- drug-induced thrombocytopenia DITP- drug induced immune thrombocytopenia DOC- drug of choice DVT- deep venous thromboembolism EPO- erythropoietin G-CSF- granulocyte colonystimulating factor HAT- heparin associated thrombocytopenia

Hgb- hemoglobin HIT- heparin induced thrombocytopenia HR- heart rate HTN- hypertension HSC- hematopoietic stem cell **HSCT-** hematopoietic stem cell transplantation ICTMG-International Collaboration for Transfusion Medicine Guidelines IgG- immunoglobulin G IL- interleukin ISTH- International Society on Thrombosis and Haemostasis ITP- immune thrombocytopenia IV- intravenous LFT- liver function test LLN- lower limit of normal LMWH- low-molecular

weight heparin

LUE- left upper extremity

MGDF- megakaryocyte growth & development factor NCCN- National **Comprehensive Cancer** Network NHL- Non-Hodgkin lymphoma NSAIDS- nonsteroidal antiinflammatory drugs NSCLC- non-small-cell lung cancer OR- odds ratio PLT- platelet PRBC- packed red blood cells QID- four times a day RBC- red blood cell rhTPO- recombinant human thrombopoietin RR- respiratory rate SCr- serum creatinine Temp-temperature TID- three times a day

TPOthrombopoietin
TPO-RAthrombopoietinreceptor agonist
URTI- upper
respiratory tract
infection
WBC- white blood
cell count
WHO- World
Health Organization

Background

Chemotherapy-induced thrombocytopenia

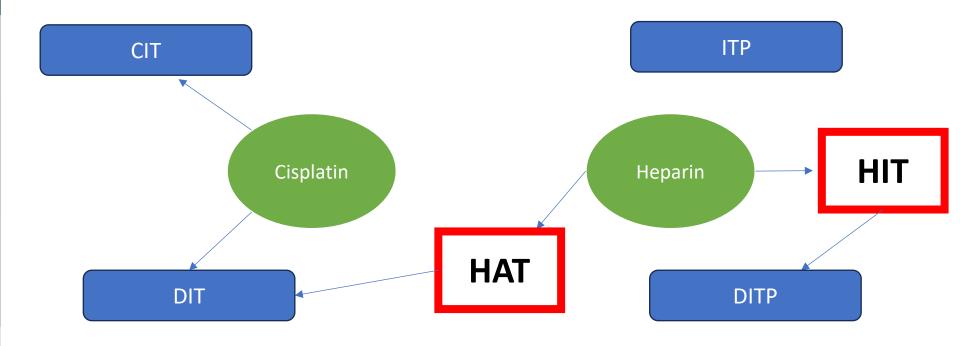
- Platelets < 100 x 10⁹/L^{1,2}
- ≥ 3-4 weeks following last chemotherapy administration¹
- Time to thrombocytopenia varies³:
 - ~5 weeks in platinum-based regimens for breast cancer and NHL
 - ~3 weeks in platinum-based regimens in CRC and ovarian cancer
 - Shorter time to thrombocytopenia in older vs younger patients

Grading thrombocytopenia- CTCAE v6.04

Grade	Criteria
Grade 1	< LLN- 75.0 x 10 ⁹ /L
Grade 2	< 75.0- 50.0 x 10 ⁹ /L
Grade 3	< 50.0- 10.0 x 10 ⁹ /L; transfusion indicated
Grade 4	< 10.0 x 10 ⁹ /L; life-threatening consequences; urgent intervention indicated
Grade 5	Death

CIT vs other thrombocytopenias

- Drug-induced thrombocytopenia (DIT)⁵
 - Nonimmune
 - Direct cytotoxic effect on megakaryocytes and/or platelets
 - Dysfunctional thrombopoiesis within bone marrow or increased platelet destruction (proapoptotic effect)
- Immune thrombocytopenia (ITP)⁶
 - o Immunoglobulin G (IgG) autoantibodies sensitizing circulating platelets
- Drug-induced immune thrombocytopenia (DITP)⁵
 - Drug-dependent antibodies (DDAbs)
 - Platelets targeted only in the presence of the sensitizing drug


CIT vs other thrombocytopenias

CIT vs other thrombocytopenias

Assessment Question #1

Which one of the following would be considered CIT?

- a. Plt 80 x 10⁹/L following heparin administration in a patient in remission
- b. Plt 150 x 10⁹/L in a patient with ALL after receiving C2D2 of cyclophosphamide and etoposide
- c. Plt 30 x 10⁹/L in a patient with multiple myeloma presenting with a GI bleed
- d. Plt 45 x 10⁹/L in a patient with ovarian cancer after receiving C2D1 of cisplatin and gemcitabine

Assessment Question #1

Which one of the following would be considered CIT?

- a. Plt 80 x 10⁹/L following heparin administration in a patient in remission
- b. Plt 150 x 10⁹/L in a patient with ALL after receiving C2D2 of cyclophosphamide and etoposide
- c. Plt 30 x 10⁹/L in a patient with multiple myeloma presenting with a GI bleed
- d. Plt 45 x 10⁹/L in a patient with ovarian cancer after receiving C2D1 of cisplatin and gemcitabine

Why do we care about CIT?

$Plt < 100 \times 10^9/L$

Caution
 administering
 chemo/radiation
 due to risk of
 bleeding &
 worsening
 thrombocytopenia²

$Plt < 50 \times 10^9/L$

 Surgical procedures complicated by bleeding²

$Plt < 10 \times 10^9/L$

 Risk of spontaneous bleeding is increased²

Why do we care about CIT?

Therapeutic delays⁷

Chemo dose and frequency reductions^{2,7}

Risk Factors for CIT

Non-chemo drugs with baseline thrombocytopenic risk

Type of cancer

Class of chemotherapy

Non-chemo drugs

Antibiotics ⁵	Linezolid, vancomycin
Thiazide diuretics ⁵	Chlorothiazide, hydrochlorothiazide, metolazone
Drugs with "platelet activity"	NSAIDS, ASA, heparin, LMWH, P2Y12 inhibitors, glycoprotein IIb/IIIa inhibitors
Other agents ⁵	Ganciclovir, lovastatin

Cancer type

- One-third of patients with a solid tumor diagnosis⁷
 - Highest prevalence in colorectal cancer, followed by NSCLC and ovarian cancer³
- 50-68% of patients with a hematologic malignancy^{3,7}

Class of chemo

- Chemotherapy agents differ in how they cause thrombocytopenia²
 - Alkylating agents act on stem cells
 - Cyclophosphamide affects later megakaryocyte progenitors
 - Bortezomib prevents platelet release from megakaryocytes
 - Other treatments promote platelet apoptosis
- Highest risk of CIT³
 - Gemcitabine-based regimens
 - Platinum-based regimens

Frequencies of thrombocytopenia with selected chemo regimens²

Dogimon	Camaan	Thrombocytopenia	
Regimen	Cancer	Grade 3	Grade 4
Ibritumomab tiuxetan (n=30)	NHL	~87%	13%
Bortezomib (n=193)	Myeloma	28%	3%
Carboplatin (n=55)	Various cancer types	2	23%
ICE (n=16)	NHL	-	35%
Gemcitabine [1 g/m2 (D1 & 8)] & cisplatin [60 mg/m2 (D1)]; q 3 weeks (n=26)	Pancreas	2	.8%
Gemcitabine [1.25 g/m2 (D1 & 8)] & cisplatin [75 mg/m2 (D1)]; q 3 weeks (n=830)	NSCLC	1	.3%
Gemcitabine [1 g/m2 (D1 & 8)] & carboplatin [AUC=5 (D1)]; q 3 weeks (n=217)	NSCLC	32%	24%

Assessment Question #2

70 year-old male with CHL (hematologic malignancy), on GEMOX (gemcitabine/oxaliplatin) is started on enoxaparin for DVT prophylaxis following admission to the medical oncology floor.

How many risk factors for CIT does this patient have?

- a. 2
- b. 3
- c. 4
- d. 5

Assessment Question #2

70 year-old male with CHL (hematologic malignancy), on GEMOX (gemcitabine/oxaliplatin) is started on enoxaparin for DVT prophylaxis following admission to the medical oncology floor.

How many risk factors does this patient have?

- a. 2
- **b.** 3
- c. 4
- d. 5

Guideline Recommendations

2024 NCCN Guidelines for Hematopoietic Growth Factors

- Evaluate for other potential causes of thrombocytopenia
 - CBC w/differential
 - Rule out nutritional deficiencies, infection, medications that suppress platelet production, ITP, HIT, radiation or chemotherapy induced myelosuppression, bone marrow involvement by underlying malignancy, etc.
- Transfuse if Plt < 10 x 10⁹/L [strong recommendation, moderatecertainty of evidence] per the 2025 AABB/ICTMG Platelet Transfusion Guidelines⁸
 - Non-bleeding patients
 - Chemo or undergoing allogeneic stem cell transplant

2024 NCCN Guidelines for Hematopoietic Growth Factors

Clinical trial enrollment recommended for use of TPO-RAs

Chemotherapy dose reduction or change in treatment regimen

2024 NCCN Guidelines for Hematopoietic Growth Factors

Clinical trial enrollment recommended for use of TPO-RAs

Chemotherapy dose reduction or change in treatment regimen

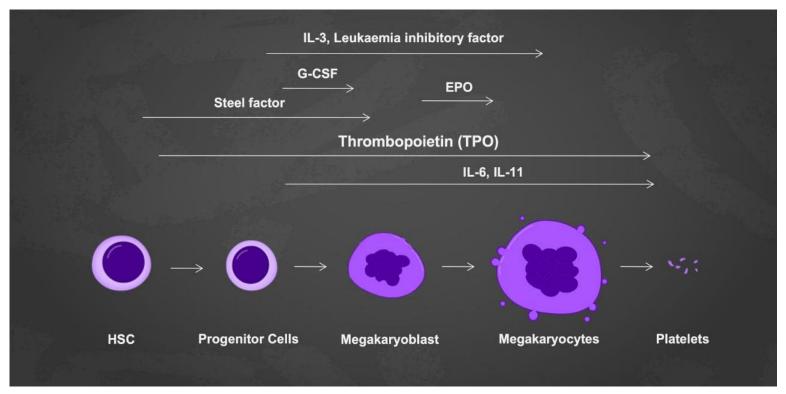
2024 NCCN Guidelines for Hematopoietic Growth Factors

- Romiplostim: TPO-RA of choice
 - Purpose: Maintain dose schedule and intensity of chemo
 - Dose: Weekly, beginning at 2-4 mcg/kg, increased no more than 1-2 mcg/kg/week
 - Target platelet count: 100-150 x 109/L
 - Max dose: 10 mcg/kg weekly
 - Insufficient data for routine use in pediatric patients

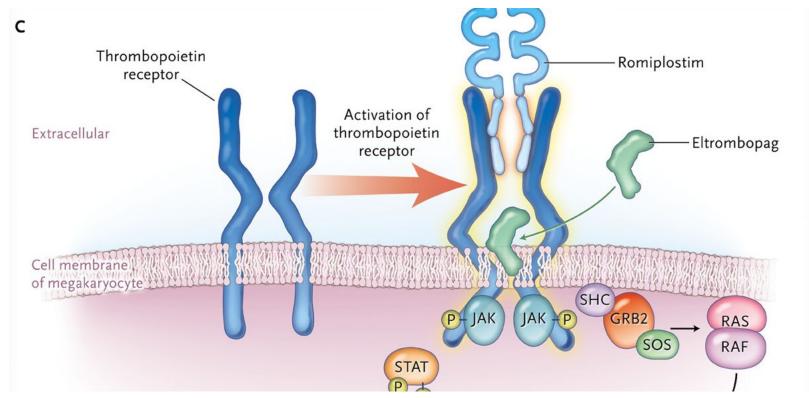
2024 ISTH CIT Guidelines⁷

- Transfuse if platelets < 10 x 10⁹/L
- Transfuse if serious bleeding (WHO grade ≥ 2) and less severe thrombocytopenia (< 50 x 10⁹/L)
- Do not transfuse prophylactically to allow for full-dose chemotherapy
- Recommend enrollment in clinical trial for TPO-RAs
 - May consider use of TPO-RA to avoid dose reduction or delay ≥ 7 days
 - DOC: Romiplostim

2024 ISTH CIT Guidelines


- Recommend against the use of TPO-RAs outside of a clinical trial if:
 - AML or high-risk myelodysplasia
 - HSCT
 - Lymphoma
- Target platelet count: 100-200 x10⁹/L

Thrombopoietin Receptor Agonists (TPO-RAs)



Life cycle of a platelet

Mechanism of action

	Romiplostim	Lusutrombopag	Eltrombopag	Avatrombopag
Indication	ITP in adults and children >1 year old	Thrombocytopenia in adult patients with chronic liver disease who are schedule to undergo a procedure	Chronic ITP in adults and children >1 year old; chronic hepatitis C patients whose thrombocytopenia limits ability to maintain interferon-based therapy; severe aplastic anemia	Chronic ITP; patients with chronic liver disease who are scheduled to undergo a procedure
Route of administration	Subcutaneous	Oral	Oral	Oral
Administration instructions	Prepared and injected by a health care professional once weekly	Take once daily with or without food	Take once daily without food or with a meal < 50 mg of calcium, separate from products with polyvalent cations, do not crush	Take with food, tablets may be crushed and mixed with yogurt or pudding

	Romiplostim	Lusutrombopag	Eltrombopag	Avatrombopag
Monitoring	 CBC weekly, then monthly once stable dose achieved Once discontinued, CBC weekly for at least 2 weeks 	CBC at baseline and within 2 days prior to scheduled procedure	 LFTs at baseline and every 2 weeks, then monthly after stable dose achieved CBC Baseline ocular examination DI with polyvalent cations, OATP1B1, and BCRP substrates 	 CBC weekly until stable Plt > 50 x 10⁹/L, then monthly Once discontinued, CBC weekly for at least 4 weeks DI with CYP2C9 and CYP3A4 inducers/inhibitors
AWP (USD)	\$1238.82/125-μg vial	\$1457.14/3 mg tab	\$225.61-612.43/tab (12.5, 25, 50, and 75 mg)	\$391.68/20 mg tab

TPO-RA Adverse Events⁹

- All TPO-RA
 - Headache
 - Fatigue
- Avatrombopag
 - Epistaxis
 - URTI
- Eltrombopag
 - Increase in ALT/AST & blood bilirubin
 - Cataract
- Romiplostim
 - Arthralgia
 - Myalgia
 - Insomnia

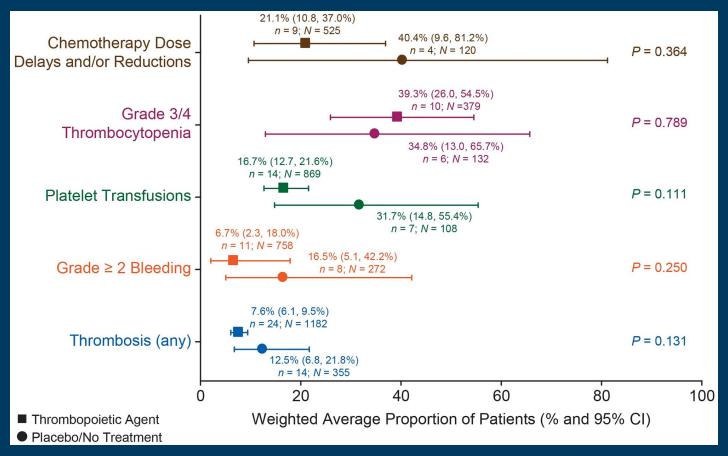
Literature Review

Systematic literature review and meta-analysis on use of Thrombopoietic agents for chemotherapy-induced thrombocytopenia¹⁰

Background

 Objective: Evaluate the efficacy and safety of the use of thrombopoietic agents in patients with CIT compared to placebo or standard-of-care treatments (chemotherapy dose delays and/or reductions and platelet transfusions)

Study design and methodology:


- 34 clinical trials & 5 observational studies (n=39) from January 1995-March 2021
- Accepted interventions: rhTPO, MGDF, romiplostim, eltrombopag, avatrombopag, lusutrombopag
- Excluded studies with n < 20 and non-English language studies

Endpoints of interest

- 1. Time to first platelet recovery
- 2. Incidence of chemotherapy dose delay by ≥ 4 days
- 3. Incidence of chemotherapy dose reduction of \geq 15% due to platelet counts < 100 x 10 9 /L
- 4. Incidence of platelet transfusions
- 5. Incidence of grade ≥ 2 bleeding

Results

 Study population mostly hematopoietic malignancies and NSCLC on platinum-based treatments or cytarabine

 Thrombopoietic agents did not significantly decrease dose delays and/or reductions compared with placebo/no treatment, or any of the other endpoints of interest

- General benefit of thrombopoietic agents can be seen among individual studies
 - Significantly improve platelet counts

Takeaways

- rhTPO and MGDF?
- Only 3/34 clinical trials included were considered to have a low risk of bias (Cochrane's Risk of Bias)
- Dosing and dosing schedules for all thrombopoietic agents were inconsistent across studies
- My meta-analysis:
 - Include mortality as an end-point
 - Exclude hemopoietic malignancies
 - Only assess TPO-RAs

Patient Case

Patient Case

IN is a 62-year-old female with stage 3C ovarian cancer with metastases to intestines on C1D21 of liposomal doxorubicin 30 mg/m² and carboplatin (AUC=5).

She presents with worsening abdominal pain, nausea, fatigue, and decreased appetite.

In 8 days, she is scheduled for her second cycle of doxorubicin and carboplatin.

Patient Case

РМН	Vitals	Pertinent labs	Medications
CholecystectomyIleostomyLUE DVTHTN	 Temp: 36.2°C HR: 79 bpm RR: 16 bpm BP: 108/72 mmHg BMI: 19.21 kg/m² 	 WBC: 7.4 RBC: 3.33 Hgb: 10.4 Plt: 46 K/mcL ANC: 4.3 AST/ALT: 38/46 units/L Albumin: 2.7 g/dL SCr: 0.75 	 Diphenoxylate-atropine 5-0.05 mg BID Eliquis 5 mg BID Gabapentin 300 mg Q8H Magnesium oxide 400 mg TID Metoclopramide 10 mg QID

Medications

- Carboplatin 350 mg IV
- Diphenoxylate-atropine 5 0.05 mg BID
- Doxorubicin liposomal 44
 mg IV
- Apixaban 5 mg BID
- Gabapentin 300 mg Q8H
- Magnesium oxide 400 mg
 TID
- Metoclopramide 10 mg QID

Which of the following agents is most likely causing this patient's thrombocytopenia?

- a. Metoclopramide
- b. Diphenoxylate-atropine
- c. Carboplatin
- d. Apixaban

Medications

- Carboplatin 350 mg IV
- Diphenoxylate-atropine 5 0.05 mg BID
- Doxorubicin liposomal 44
 mg IV
- Apixaban 5 mg BID
- Gabapentin 300 mg Q8H
- Magnesium oxide 400 mg
 TID
- Metoclopramide 10 mg QID

Which of the following agents is most likely causing this patient's thrombocytopenia?

- a. Metoclopramide
- b. Diphenoxylate-atropine
- c. Carboplatin
- d. Apixaban

Which of the following would you recommend to manage this patient's CIT?

- a. Transfuse with 1 unit of PRBC
- b. Hold apixaban
- c. Initiate romiplostim; enroll in clinical trial if able
- d. Initiate high-dose steroids

Which of the following would you recommend to manage this patient's CIT?

- a. Transfuse with 1 unit of PRBC
- b. Hold apixaban
- c. Initiate romiplostim; enroll in clinical trial if able
- d. Initiate high-dose steroids

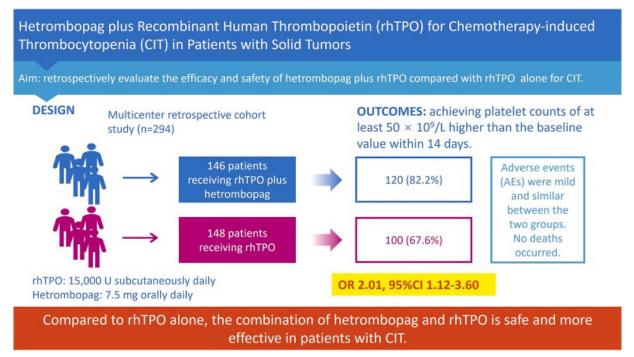
7 days after receiving romiplostim, platelets are now **40 x 10**9/L. Tomorrow, the patient is scheduled to start Cycle 2 of doxorubicin/carboplatin. What would you recommend as the next step in managing this patient's CIT?

- a. Enroll in a different TPO-RA clinical trial
- b. Transfuse with 1 unit of PRBC
- Discontinue current chemotherapy regimen and initiate a different regimen
- d. Delay chemotherapy; allow for platelet count to recover

7 days after receiving romiplostim, platelets are now **40 x 10**9/L. Tomorrow, the patient is scheduled to start Cycle 2 of doxorubicin/carboplatin. What would you recommend as the next step in managing this patient's CIT?

- a. Enroll in a different TPO-RA clinical trial
- b. Transfuse with 1 unit of PRBC
- Discontinue current chemotherapy regimen and initiate a different regimen
- d. Delay chemotherapy; allow for platelet count to recover

Future of CIT management



Promising future for CIT research

- 215 NSCLC patients treated with gemcitabine/carboplatin were whole-exome sequenced to identify genetic markers associated with CIT¹¹
 - Researchers were able to identify and validate genetic variations within hematopoiesis-related pathways
- RECITE phase 3 trial (Al-Samkari, et al.)
 - 165 colorectal, gastroesophageal, or pancreatic cancer patients receiving oxaliplatin-based regimens
 - Romiplostim vs placebo for Plt ≤ 85 x 10⁹/L
 - Primary endpoint: No CIT-induced dose modification
 - Presented at 2025 ASCO conference

Promising future for CIT research

Res Pract Thromb Haemost. 2023;7(7):102231. doi:10.1016/j.rpth.2023.102231

Current clinical trials for TPO-RAs

 PROCLAIM trial (phase 3, NCT03937154): Romiplostim for CIT in NSCLC, ovarian, or breast cancer

 Romiplostim to prevent CIT in patients >1 year old with Ewing Sarcoma (single-arm study, NCT07048249)

ACT-GI trial (phase 2, NCT05772546): Avatrombopag for CIT in GI malignancies

Summary/Conclusion

- Current guidelines recommend against the use transfusions prophylactically and only if Plt 10 x 10⁹/L
- TPO-RAs are recommended if their use will allow for full-dose administration of chemotherapy and prevent delays
- There are currently no FDA-approved TPO-RAs for CIT
- What patients still need:
 - High-quality studies, long-term follow-up
 - Morbidity/mortality
 - Clinical trials

References

- 1.Hematopoietic Growth Factors. NCCN clinical practice guidelines in oncology (NCCN Guidelines®); 2023. https://www.nccn.org/professionals/physician_gls/pdf/growthfactors.pdf
- 2. Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park). 2015;29(4):282-294.
- 3. Shaw JL, Nielson CM, Park JK, Marongiu A, Soff GA. The incidence of thrombocytopenia in adult patients receiving chemotherapy for solid tumors or hematologic malignancies. Eur J Haematol. 2021;106(5):662-672. doi:10.1111/ejh.13595
- 4. Common Terminology Criteria for Adverse Events (CTCAE) Version 6.0 [Excel file]. Bethesda, MD: National Cancer Institute; 2025. Accessed September 3, 2025.
- 5. Bakchoul T, Marini I. Drug-associated thrombocytopenia. Hematology Am Soc Hematol Educ Program. 2018;2018(1):576-583. doi:10.1182/asheducation-2018.1.576
- 6. Pietras NM, Gupta N, Justiz Vaillant AA, Pearson-Shaver AL. Immune Thrombocytopenia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; May 5, 2024.
- 7. Soff G, Leader A, Al-Samkari H, et al. Management of chemotherapy-induced thrombocytopenia: guidance from the ISTH Subcommittee on Hemostasis and Malignancy. J Thromb Haemost. 2024;22(1):53-60. doi:10.1016/j.jtha.2023.09.031
- 8. Metcalf RA, Nahirniak S, Guyatt G, et al. Platelet Transfusion: 2025 AABB and ICTMG International Clinical Practice Guidelines. *JAMA*. 2025;334(7):606-617. doi:10.1001/jama.2025.7529
- 9. Gilreath J, Lo M, Bubalo J. Thrombopoietin Receptor Agonists (TPO-RAs): Drug Class Considerations for Pharmacists. Drugs. 2021;81(11):1285-1305. doi:10.1007/s40265-021-01553-7
- 10. Soff GA, Ray-Coquard I, Rivera LJM, et al. Systematic literature review and meta-analysis on use of Thrombopoietic agents for chemotherapy-induced thrombocytopenia. PLoS One. 2022;17(6):e0257673. Published 2022 Jun 9. doi:10.1371/journal.pone.0257673
- 11. Björn N, Sigurgeirsson B, Svedberg A, et al. Genes and variants in hematopoiesis-related pathways are associated with gemcitabine/carboplatin-induced thrombocytopenia. Pharmacogenomics J. 2020;20(2):179-191. doi:10.1038/s41397-019-0099-8

ADVOCATE HEALTH

Questions?

Itza Osorio, PharmD., MBA Itzanami.Osorio@aah.org

CE Learning Platform

https://ce.advocatehealth.org

Remember to create/update your profile on the CE platform, complete an evaluation, then claim credit

ADVOCATE HEALTH

SMS Text Code to Claim Credit:

Claim your attendance instantly by texting **XXXXXX** to **414-219-1219**.

- Texting alone will not claim credit. You will still need to fill out an evaluation.
- If you need to <u>claim less credit</u> please contact the IPCE office at <u>cme@aah.org</u>
- Credits will be stored in your account on https://ce.advocatehealth.org

Code is valid for 30 days after the day of the activity.

*Remember your <u>profile</u> and mobile number will need to be updated on the CE Learning Platform in order to claim credit via texting.

