

Clear the Air Optimizing Pneumonia Treatment

Natalie Moreno, PharmD, PGY2 Infectious Diseases

Advocate Lutheran General

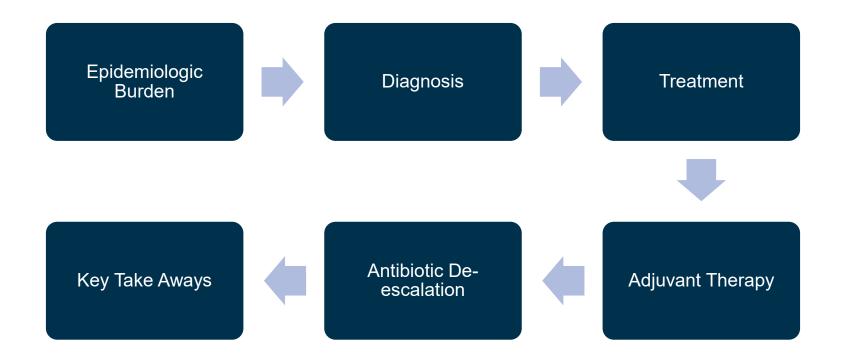
November 12th 2025

Disclosures

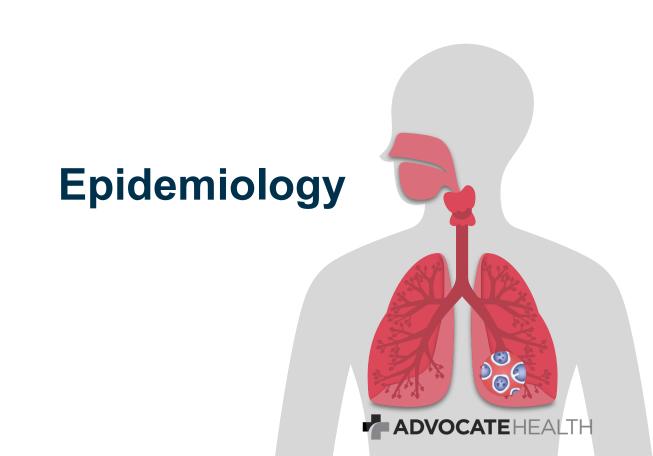
The planners and speaker have indicated that there are no relevant financial relationships with any ineligible companies to disclose.

Abbreviation Key

- ATS: American Thoracic Society
- IDSA: Infectious Diseases Society of America
- MRSA: Methicillin resistant Staphylococcus aureus
- CAP: community acquired pneumonia
- HAP: hospital acquired pneumonia
- VAP: ventilator acquired pneumonia
- IMV: Invasive mechanical ventilation
- ICU: Intensive care unit


Learning Objectives

At the end of this session, learners should be able to:


- Identify patient specific factors that affect pneumonia treatment
- Outline the key differences between the 2019 IDSA/ATS guidelines and the 2025 ATS guidelines
- Recognize common workflow gaps in pneumonia diagnosis and management
- Apply evidence-based strategies to determine appropriate duration of therapy for pneumonia in various patient populations

Outline

Epidemiology

- Leading cause of hospitalization and death
- > 1 million in-hospital deaths/year
- In-hospital mortality rates range from 7% to 13%
- 1-year mortality rates post hospitalization ~18%
- Cost per pneumonia hospitalization ~ \$10,000–\$19,000

Risk Factors

The presence of two or more chronic conditions substantially increases pneumonia risk

Immunocompromising conditions:

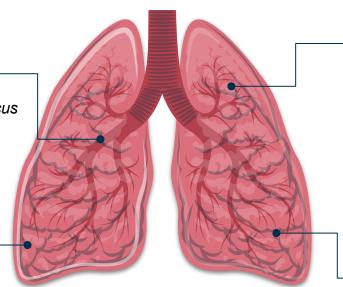
- HIV infection
- Hematological malignancies
- Immunodeficiency syndromes

Other chronic conditions

- Chronic kidney disease
- Liver disease
- Heart failure
- Diabetes
- Neurological disease

Classifications

Hospital acquired:


Pneumonia that develops >48 hours after hospital admission

Pseudomonas aeruginosa, Klebsiella, E. coli, Staphylococcus aureus

Ventilation acquired:

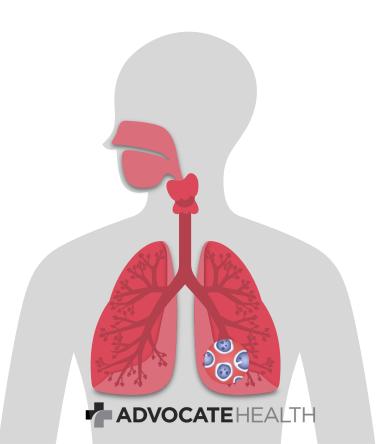
Subset of HAP that occurs ≥48–72 hours after endotracheal intubation/mechanical ventilation

Pseudomonas aeruginosa, Klebsiella, E. coli, Staphylococcus aureus

Community acquired:

Pneumonia in patients who have not been recently hospitalized or had significant healthcare exposure

Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Legionella, Mycoplasma, Chlamydia pneumoniae


Aspiration:

Pneumonia caused by inhalation of oropharyngeal or gastric contents into the lower respiratory tract

Oral flora, gram-negatives

Diagnosis

Diagnosis of Pneumonia

- Physical findings can vary and are influenced by the severity of lung consolidation, the type of organism, the extent of the infection, and host factors
- The presence of pulmonary infiltrates are considered a gold standard for diagnosis when supported by laboratory and clinical features

Diagnosis of Pneumonia

2019 IDSA/ATS

- CT scan is the most accurate diagnostic
- Radiographic imaging as an alternative

2025 ATS

• Lung ultrasounds are as accurate as chest x-ray in confirming a clinical suspicion of pneumonia

Sputum and Blood Cultures

- Not recommended in the outpatient setting
- May be considered for hospitalized patients who meet the following criteria:
 - Severe pneumonia
 - Empirically treated for MRSA or Pseudomonas aeruginosa
 - Previous respiratory tract infection with confirmed MRSA of Pseudomonas aeruginosa
 - Hospitalized or received IV antibiotics in the past 90 days

Utility of Sputum Cultures

Pros

 Potential antibiotic deescalation

Cons

- Low Yield
- DetectColonization

Utility of Blood Cultures

Pros

- Potential for antibiotic de-escalation
- May reveal alternative infectious source

Cons

- Rarely change empiric therapy
- High contamination rate
- Increased cost a resource utilization

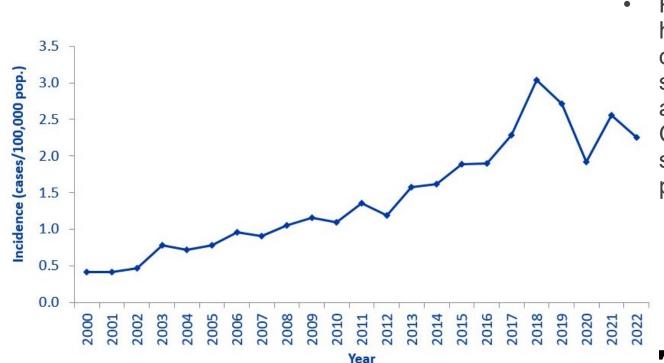
Urinary Antigens

Non-culture-based tests that detect antigen shed from pathogens excreted in the urine

Simple, rapid, and non-invasive diagnostic tool

Unaffected by prior antibiotic administration

Most common bacteria detected by urinary antigen tests are Streptococcus pneumoniae and Legionella pneumophila


Legionella Testing

- Only detects one type of Legionella
- Possible benefit in severe cases and in outbreak settings
- Legionnaires' disease outbreaks are associated with:
 - Healthcare settings: Hospitals, long-term care facilities
 - Travel: Hotels, resorts, cruise ships
- No statistical differences seen in death, clinical relapse, ICU admission, length of stay or length of antibiotic treatment

Legionella Testing

Legionnaires' disease in the United States, 2000-2022

Presence of hyponatremia (OR 3.3), diarrhea (OR 2.0), smoking (OR 2.4), and admission during June— October (OR 3.4) are the strongest predictors of a positive Legionella test

Pneumococcal Testing

Rarely affects outcomes

Low impact on management

Added cost and testing burden

Poor influence on antibiotic de-escalation

Limited role outside of severe disease

Diagnostic Summary

Sputum Cultures

- May be useful for antibiotic de-escalation
- Requires high-quality sputum sample

Blood Cultures

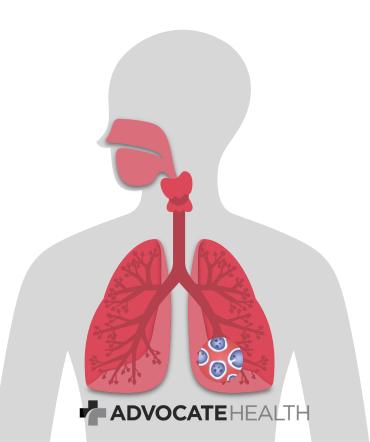
- May be useful for antibiotic de-escalation
- May uncover alternative source of infection

Legionella pneumophila urinary antigen test

 May be considered in cases of outbreak, recent travel, or recent health-care exposure

Streptococcal pneumonia urinary antigen test

Poor influence on antibiotic de-escalation


Assessment Question #1

JR is a 67-year-old male with a history of COPD, type 2 diabetes, and hypertension, who presents to the emergency department with a 3-day history of fever, productive cough with yellow sputum, intermittent chest pain, and increased shortness of breath requiring supplemental oxygen. Lung exam reveals crackles, and bronchial breath sounds over the right lower lobe. Vancomycin and piperacillin-tazobactam were initiated. What labs would you consider ordering?

Select all that apply:

- A. Blood culture
- B. Streptococcus pneumoniae urinary antigen
- C. Sputum culture
- D. Legionella urine antigen

Assessing Severity

The Pneumonia Severity Index (PSI)

Demographic factors Age (in years) Laboratory and CXR findings

Men

Women -10

Nursing home resident +10

Coexisting illnesses

Neoplastic disease +30

Liver disease +20

CHF +10

CVA +10

Renal disease +10

Findings on physical examination

Altered mental status +20

RR ≥ 30/min +20

SBP <90 mmHg +20

BT <35°C or ≥ 40 °C +15

HR ≥ 125 beats/min +10

Arterial pH <7.35 +30

BUN ≥ 30 +20

Sodium < 130 + 20

Glucose ≥ 250 +10

Hematocrit <30% +10

 $PaO_{2} < 60 \text{ mmHg or } SpO_{2} < 90\% + 10$

Pleural effusion +10

PSI Class	Total # points	30-Day mortality	Disposition
I	<51	0.1%	outpatient
II	51-70	0.6%	Outpatient
III	71-90	0.9%	Outpatient vs short stay inpatient
IV	91-130	9.3%	inpatient
V	>130	27.0%	Inpatient ICU

Assessing Severity

С	Confusion of new onset		
U	Urea (BUN) > 7 mmol/L (19mg/dl)		
R	Respiratory rate > 30 breathes/min		
В	Blood pressure <90/60 mmhg		
65	Age >65 years old		

Interpretation:

0-1: Treat as outpatient

2: Admit patient

>3: Consider ICU admission

Classifications

Severe community acquired pneumonia includes either 1 major criterion or ≥ 3 minor criteria:

Major criteria:

- Septic shock with need for vasopressors
- Respiratory failure requiring mechanical ventilation

Minor criteria:

- Hypotension requiring aggressive fluid resuscitation
- Thrombocytopenia (platelet count < 100,000/microL)
- Hypothermia (core temperature < 36°C)
- Uremia (Blood urea nitrogen level ≥ 20 mg/dL)
- Leukopenia (white blood cell count < 4,000 cells/microL

- Multilobar infiltrates
- Confusion/disorientation
- Respiratory rate ≥ 30 breathes/min

Severity	Standard regimen	Empiric therapy options
Non-severe inpatient pneumonia	β-Lactam + macrolide or fluroquinolone	Ampicillin-sulbactam, cefotaxime, ceftriaxone, or ceftaroline + azithromycin or clarithromycin or doxycycline levofloxacin or moxifloxacin
Severe inpatient pneumonia	β -Lactam + macrolide or β-lactam + fluroquinolone	Ampicillin-sulbactam, cefotaxime, ceftriaxone, or ceftaroline + azithromycin or clarithromycin or doxycycline Ampicillin-sulbactam, cefotaxime, ceftriaxone, or ceftaroline + levofloxacin or moxifloxacin

Risk factors for MRSA and *Pseudomonas aeruginosa*:

Previously infected with MRSA or *P.*aeruginosa

Hospitalized in the past 90 days

IV antibiotics in the past 90 days

Locally validated risk factors

Locally validated risk factors for *Pseudomonas aeruginosa*:

Chronic Structural Lung Disease

- Pulmonary Fibrosis
- End-Stage COPD

Immunosuppression

- Congenital or acquired immunodeficiency
- Hematologic disease
- Receipt of immunosuppressive medications within previous 30 days
- Current use of >10 mg/day prednisone or equivalent for >30 days
- Neutropenia (<1000 cells/mm³)

Locally validated risk factors for MRSA:

MRSA colonization

IV drug abuse

Critically ill with recent influenza infection

Risk Factor	Empiric Therapy Options
MRSA	Vancomycin or linezolid
Pseudomonas aeruginosa	Piperacillin-tazobactam, cefepime, ceftazidime, aztreonam, meropenem, or imipenem

Aspiration Coverage

- Anaerobes are infrequently isolated, even in cases labeled as aspiration pneumonia
- Usually resolves within 24-48 hours with supportive care
- Antibiotics are only recommended if there are radiographic evidence of abscess or empyema

Assessment Question #2

Which of the following patient-specific factors should prompt consideration of MRSA coverage in pneumonia treatment?

- A) Elevated C-reactive protein levels
- B) Presence of chronic obstructive pulmonary disease
- C) Recent hospitalization with antibiotic therapy within the past 90 days
- D) Smoking history greater than 20 pack-years

Flu and Concomitant Pneumonia

2019 IDSA/ATS

• If radiographic evidence of pneumonia is present, begin antibiotics

2025 ATS

- For patients being treated outpatient and have no comorbidities, it is not recommended to prescribe empiric antibiotic treatment
- For adult inpatients or those with comorbidities, must weigh 2 important risks:
 - Risks of missed or delayed antibiotic treatment to patients with concomitant bacterial pneumonia
 - Risks of antibiotic use to individual and public health

Flu and Concomitant Pneumonia

Comorbidities that may warrant antibiotic therapy

- Chronic pulmonary disease other than asthma
- End-stage liver disease
- End-stage renal disease
- Cardiovascular disease
- Alcoholism
- Neoplastic disease

Corticosteroids

2019 IDSA/ATS

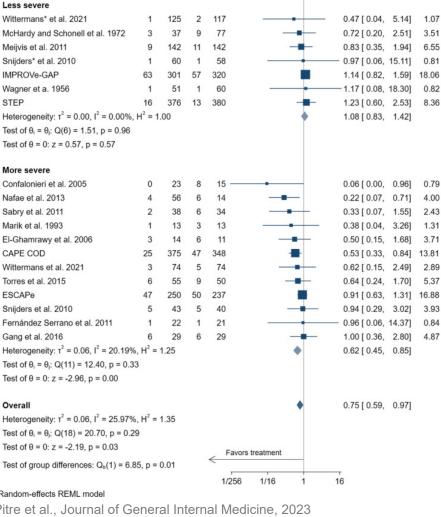
- Generally, not recommended
- May be considered only in cases of refractory shock

2025 ATS

- Non-severe pneumonia: not recommended, the decrease in mortality was not statistically significant
- Severe pneumonia: recommend systemic corticosteroids, excludes patients with severe CAP due to influenza pneumonia

Corticosteroids

Corticosteroids in Community-Acquired Bacterial Pneumonia: A Systematic Review


Study Design

 Meta analysis of 30 randomized control trials, including a total of 7519 patients

Study Objective

 Estimate the effect of corticosteroid therapy compared with control on mortality in hospitalized adults

Corticosteroids Usual care

No Yes Risk ratio

with 95% CI

Weight

(%)

Corticosteroids in Community-Acquired Bacterial Pneumonia: A Systematic Review

Conclusions:

Corticosteroids reduce mortality in patients with more severe CAP, the need for invasive mechanical ventilation, and ICU admission

Random-effects RFML model

Study

Pitre et al., Journal of General Internal Medicine, 2023

Assessment Question #3

How do the 2025 ATS guideline address the use of corticosteroids in severe pneumonia compared to the 2019 IDSA/ATS guidelines?

- A. The 2025 guidelines strongly encourage the routine use of corticosteroids for severe CAP, while the 2019 guidelines suggest their use in select cases
- B. The 2025 guidelines advise against the use of corticosteroids in any severe pneumonia cases, whereas the 2019 guidelines recommend them for patients with high inflammatory markers
- C. The 2025 guidelines recommend corticosteroids for patients with CAP who fail to respond to initial antibiotic therapy, while the 2019 guidelines focus more on early antibiotic de-escalation
- D. The 2025 guidelines focus on corticosteroid therapy for viral pneumonia, whereas the 2019 guidelines only support their use for bacterial pneumonia

Antibiotic De-escalation

- Clinical improvement is typically observed within 48 to 72 hours after initiation of antibacterial therapy
- Deescalate when the patient demonstrates clinical improvement, is hemodynamically stable, and can tolerate oral medications

Criteria for Clinical Stability						
Temperature < 100.4°F (37.8°C)	RR ≤24 breaths/minute					
Heart rate ≤100 beats/minute	Systolic Blood Pressure ≥90 mmHg					
Ability to eat	Normal mentation					
O_2 Saturation ≥90% on room air OR p O_2 > 60 mmHg on room air OR return to baseline O_2 needs						

Utility of Procalcitonin

- Procalcitonin is a marker of systemic response to bacterial infection
- Noninfectious causes for rise in procalcitonin include major trauma, recent surgery, severe burns, severe cardiogenic shock and chronic kidney disease
- Certain medications, such as immunomodulatory therapies, can also cause elevated procalcitonin

Procalcitonin Interpretation

- Procalcitonin should not be used in isolation to guide antimicrobial therapy initiation
- Insufficient sensitivity, specificity and lack of mortality benefit
- Can help guide the discontinuation of antibiotics, especially when procalcitonin levels fall below 0.5 µg/L or decrease by ≥80% from peak values

Duration of Therapy

2019 IDSA/ATS

- No less than 5 days for non-severe pneumonia
- Pneumonia due to MRSA or pseudomonas, no less than 7 days

2025 ATS

- Non-Severe: 3-5 days
 - Clinical cure rate 3 to 4 weeks after treatment was similar among patients who received less than 5 days of antibiotics versus those who received 5 or more days
- Severe: 5 or more days

Duration of Therapy

Study	Design	Results
El Moussaoui et al	After 3 days treatment with IV amoxicillin, patients were randomly assigned to oral amoxicillin (n = 63) or placebo (n = 56) three times daily for 5 days	The clinical success rate: • Day 10: 93% for both (difference 0.1%, 95% CI -9% to 10%) • Day 28: 90% compared with 88% (difference 2%, 95% CI -9% to 15%)
Dinh et al	After 3 days of treatment with β -lactam therapy, patients were randomly assigned to receive placebo (n = 157) or continued β -lactam therapy (n = 153) for 5 extra days	Cure at day 15: • 77% of participants in the placebo group • 68% of participants in the β-lactam group (between-group difference of 9.42%, 95% CI -0.38 to 20.04)

Duration of Therapy

E) Sub-analysis #2.3: Clinical cure – short follow-up: inpatient only

	Less than 5	days	5 or more	days		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Dinh - 2021	113	145	100	146	65.3%	1.14 [0.99, 1.31]	
Moussaoui - 2006	50	54	56	60	34.7%	0.99 [0.90, 1.10]	†
Total (95% CI)		199		206	100.0%	1.09 [0.98, 1.20]	•
Total events	163		156				
Heterogeneity: Chi² = 3.54, df = 1 (P = 0.06); I² = 72%							0.01 0.1 1 10 100
Test for overall effect Z = 1.65 (P = 0.10)							Favors [less than 5 days] Favors [5 or more days]

M) Sub-analysis #3.3: Clinical cure – long follow-up: inpatient only

	Less than 5	days	5 or more	days		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Dinh - 2021	105	141	107	141	49.5%	0.98 [0.86, 1.12]	•
Moussaoui - 2006	47	52	49	56	50.5%	1.03 [0.90, 1.18]	•
Total (95% CI)		193		197	100.0%	1.01 [0.92, 1.11]	.
Total events	152		156				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.33, df = 1 (P = 0.57); i ² = 0%							0.01 0.1 1 10 100
Test for overall effect	Z=0.15 (P=	0.88)					Favors [less than 5 days] Favors [5 or more day]

Assessment Question #4

MK was initiated on IV ceftriaxone and azithromycin 2 days ago. Blood cultures, sputum cultures, and urine antigen tests were negative. He has been afebrile for 48 hours, his oxygenation has improved, and he is considered to be clinically stable.

Which of the following is the most appropriate next step regarding his antibiotic therapy?

- A. Continue IV ceftriaxone for a total of 5 days
- B. Stop antibiotics since his S. pneumoniae urine antigen test was negative
- C. Switch to oral amoxicillin & azithromycin for a total treatment duration of 3 days
- D. Switch to oral azithromycin monotherapy for a total of 7 days

Key Take Aways

Avoid unnecessary testing and treatment in patients with non-severe pneumonia

In cases of influenza and concomitant pneumonia, weight the risk vs benefits of initiating antibiotics

Assess MRSA and Pseudomonal risk when initiating empiric therapy

Corticosteroid use is recommended in patients with severe CAP

The recommended duration of therapy for pneumonia is now 3-5 days for non-severe CAP and 5 or more days for severe CAP

References

- Almirall, Jordi, et al. "Risk Factors for Community-Acquired Pneumonia in Adults: A Systematic Review of Observational Studies." *Respiration*, vol. 94, no. 3, 2017, pp. 299–311, pubmed.ncbi.nlm.nih.gov/28738364/, https://doi.org/10.1159/000479089.
- Bai, Anthony D, et al. "Anaerobic Antibiotic Coverage in Aspiration Pneumonia and the Associated Benefits and Harms: A Retrospective Cohort Study." *Chest*, 1 Feb. 2024, https://doi.org/10.1016/j.chest.2024.02.025.
- CDC. "Legionellosis Surveillance and Trends." *Legionella (Legionnaires' Disease and Pontiac Fever)*, 17 May 2024, www.cdc.gov/legionella/php/surveillance/index.html.
- Davis, Matthew R, et al. "Things We Do for No Reason Ordering *Streptococcus Pneumoniae* Urinary Antigen in Patients with Community-Acquired Pneumonia." *Open Forum Infectious Diseases*, vol. 11, no. 3, 8 Feb. 2024, https://doi.org/10.1093/ofid/ofae089. Accessed 6 Apr. 2025.
- Jones, Barbara E, et al. "Diagnosis and Management of Community-Acquired Pneumonia. An Official American Thoracic Society Clinical Practice Guideline." *PubMed*, 18 July 2025, https://doi.org/10.1164/rccm.202507-1692st.
- Kim, Priscilla, et al. "Urinary Antigen Testing for Respiratory Infections: Current Perspectives on Utility and Limitations." *Infection and Drug Resistance*, vol. Volume 15, Apr. 2022, pp. 2219–2228, https://doi.org/10.2147/idr.s321168.
- Mandell, Lionel A., and Michael S. Niederman. "Aspiration Pneumonia." *New England Journal of Medicine*, vol. 380, no. 7, 2019, pp. 651–663, www.nejm.org/doi/full/10.1056/NEJMra1714562, https://doi.org/10.1056/nejmra1714562.
- Metlay, Joshua P., et al. "Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America." *American Journal of Respiratory and Critical Care Medicine*, vol. 200, no. 7, 1 Oct. 2019, pp. e45–e67, www.atsjournals.org/doi/full/10.1164/rccm.201908-1581ST, https://doi.org/10.1164/rccm.201908-1581st.

References

- Mohanty, Salini, et al. "Clinical and Economic Burden of Invasive Pneumococcal Disease and Non-Invasive All-Cause Pneumonia in Hospitalized US Adults: A Multicenter Analysis from 2015-2020." *International Journal of Infectious Diseases*, 1 Mar. 2024, pp. 107023–107023, https://doi.org/10.1016/j.ijid.2024.107023.
- Musher, Daniel M., and Anna R. Thorner. "Community-Acquired Pneumonia." *New England Journal of Medicine*, vol. 371, no. 17, 23 Oct. 2014, pp. 1619–1628, https://doi.org/10.1056/nejmra1312885.
- Ochoa-Gondar, Olga, et al. "Incidence and Risk Factors of Pneumococcal Pneumonia in Adults: A Population-Based Study." *BMC Pulmonary Medicine*, vol. 23, no. 1, 8 June 2023, https://doi.org/10.1186/s12890-023-02497-2.
- Pitre, Tyler, et al. "Corticosteroids in Community-Acquired Bacterial Pneumonia: A Systematic Review, Pairwise and Dose-Response Meta-Analysis." *Journal of General Internal Medicine*, 19 Apr. 2023, https://doi.org/10.1007/s11606-023-08203-6.
- Shi, Ting, et al. "Global Disease Burden Estimates of Respiratory Syncytial Virus—Associated Acute Respiratory Infection in Older Adults in 2015: A Systematic Review and Meta-Analysis." *The Journal of Infectious Diseases*, vol. 222, no. Supplement 7, 18 Mar. 2019, pp. S577—S583, https://doi.org/10.1093/infdis/jiz059.
- Vaughn, Valerie M, et al. "Community-Acquired Pneumonia: A Review." *PubMed*, vol. 332, no. 15, 2024, https://doi.org/10.1001/jama.2024.14796.
- Zhang, David, et al. "Utility of Blood Cultures in Pneumonia." *The American Journal of Medicine*, vol. 132, no. 10, Oct. 2019, pp. 1233–1238, https://doi.org/10.1016/j.amjmed.2019.03.025.

Questions?

Natalie Moreno Natalie.moreno2@aah.org