Updates on the Treatment of Alzheimer's Disease: Focus on Anti-amyloid Therapies

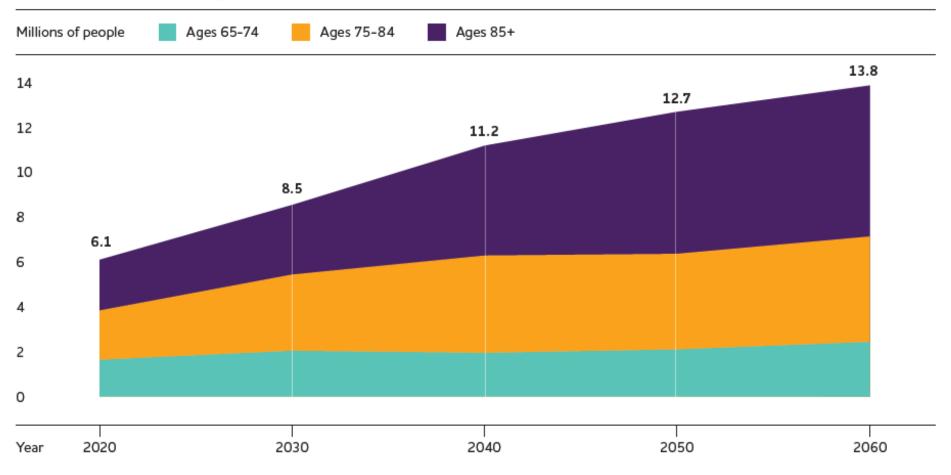
2021-11-03 | Darren Gitelman MD

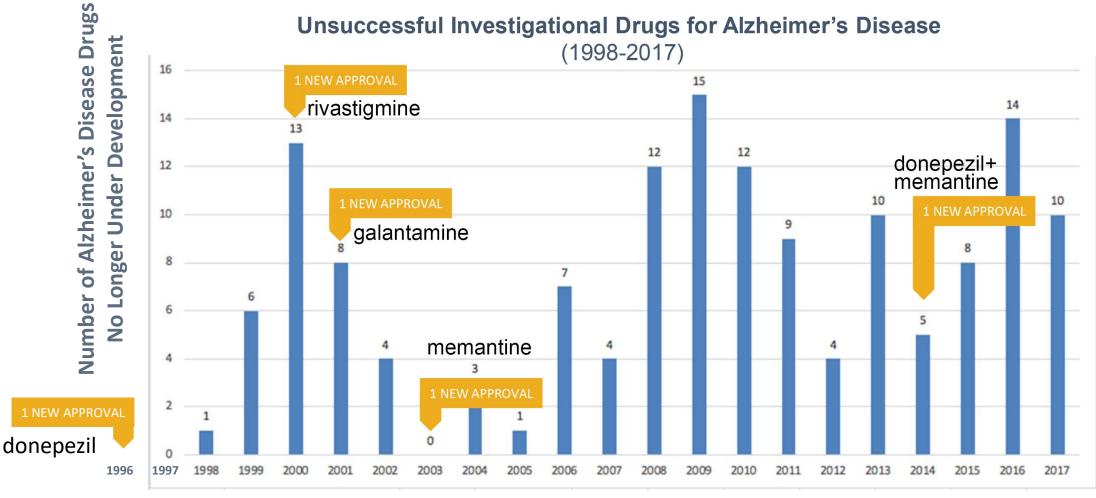
Director of Cognitive Disorders, AMG

Senior Medical Director, Advocate Memory Center

Disclosures

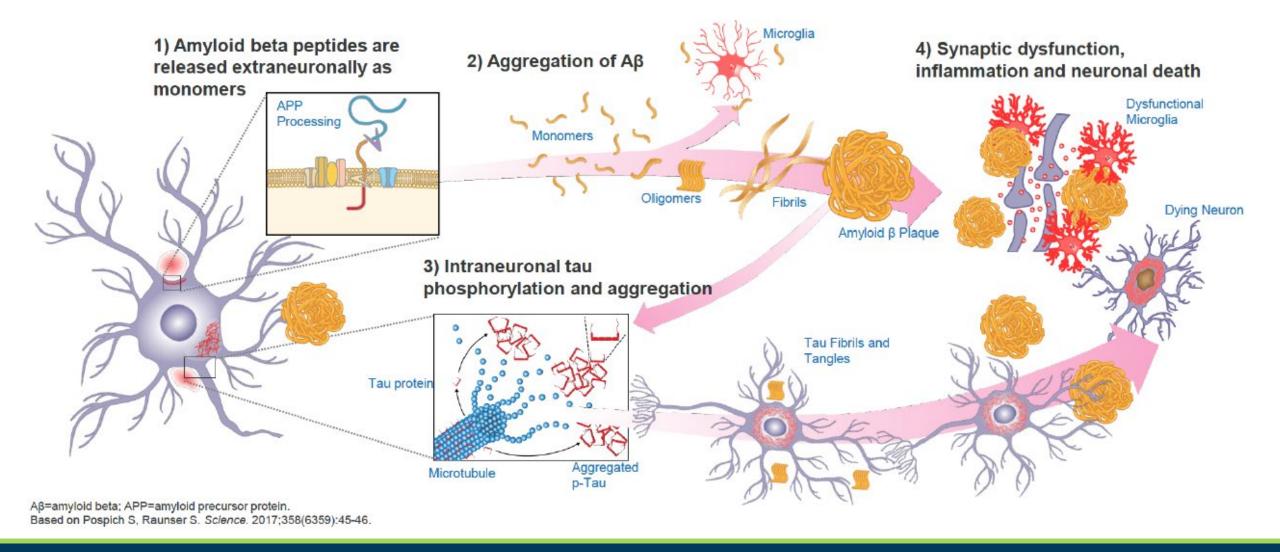
- Consultant for Novartis
- Research Support from: AbbVie, Biogen, Eisai, Lilly, Roche, Suven, Alzheimer's Association, NIA
- Investments: None to disclose
- Boards: None
- Speakers' bureau: Biogen (but not for therapeutics)

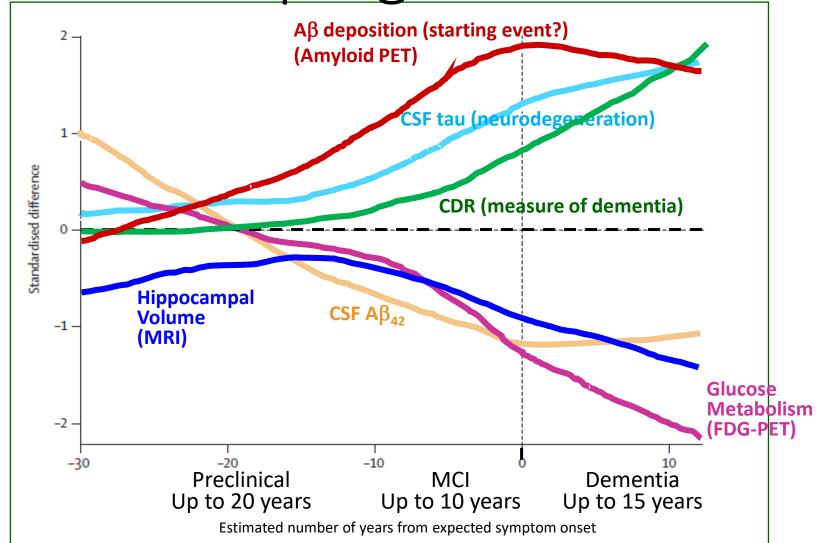

Alzheimer's Disease Burden


- > 5.8 million with Alzheimer's in 2020
- > \$259 billion costs in 2017
- 5th leading cause of death among Americans aged65 and older
- ➤ AD results in memory loss, changes in behavior and loss of functional independence
- Patients become completely dependent as the disease advances
- > There is no treatment that alters the disease course

U.S. Alzheimer's disease projections

Projected Number of People Age 65 and Older (Total and by Age) in the U.S. Population with Alzheimer's Dementia, 2020 to 2060


Results

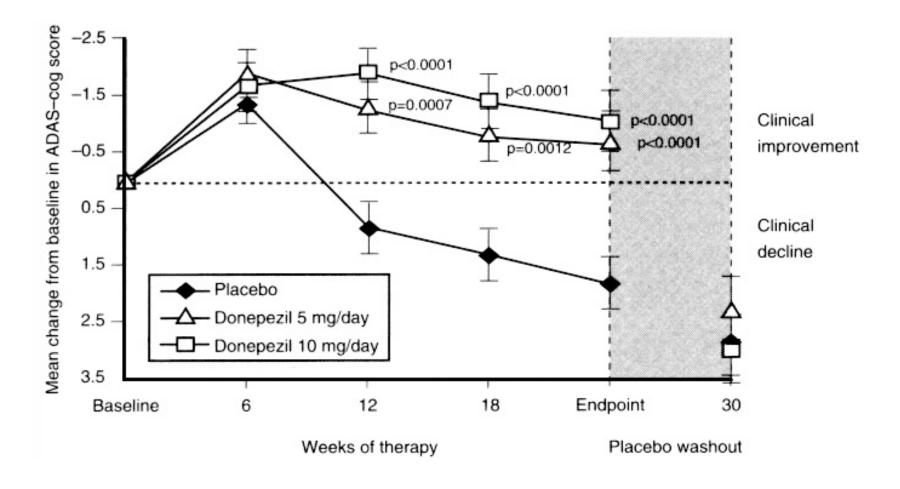

146 Total Unsuccessful Drugs | 4 Total Approved Medicines

Source: PhRMA analysis of Adis R&D Insight Database, 25 January 2018

The Two Pathological Hallmarks of Alzheimer's Disease in the Brain Are Aβ Plaques and Neurofibrillary Tangles

Biomarker progression in AD

CLINICAL DEMENTIA RATING (CDR™):

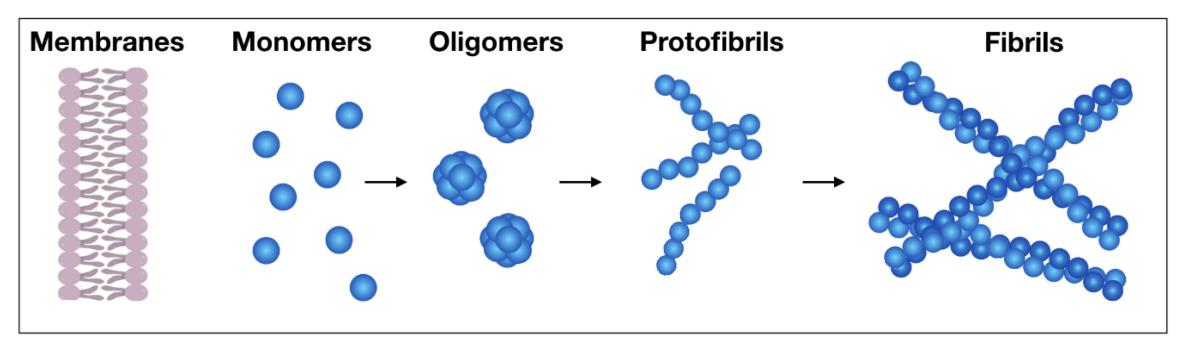

0 0.5 1 2 3 Global vs. Sum of Boxes Scores

	Impairment								
	None Questionable 0.5		Mild 1	Moderate 2	Severe 3				
Memory	No memory loss or slight inconsistent forgetfulness	Consistent slight forgetfulness; partial recollection of events; "benign" forgetfulness	Moderate memory loss; more marked for recent events; defect interferes with everyday activities	Severe memory loss; only highly learned material retained; new material rapidly lost	Severe memory loss; only fragments remain				
Orientation	Fully oriented	Fully oriented except for slight difficulty with time relationships	Moderate difficulty with time relationships; oriented for place at examination; may have geographic disorientation elsewhere	Severe difficulty with time relationships; usually disoriented to time, often to place	Oriented to person only				
Judgment & Problem Solving	Solves everyday problems & handles business & financial affairs well; judgment good in relation to past performance	Slight impairment in solving problems, similarities, and differences	Moderate difficulty in handling problems, similarities, and differences; social judgment usually maintained	Severely impaired in handling problems, similarities, and differences; social judgment usually impaired	Unable to make judgments or solve problems				
Community Affairs	Independent function at usual level in job, shopping, volunteer and social groups Slight impairment in these activities		Unable to function independently at these activities although may still be engaged in some; appears normal to casual inspection	No pretense of independence Appears well enough to be taken to functions outside a family home	Appears too ill to be taken to functions outside a family home				
Home and Hobbies	Life at home, hobbies, and intellectual interests well maintained	Life at home, hobbies, and intellectual interests slightly impaired	Mild but definite impairment of function at home; more difficult chores abandoned; more complicated hobbies and interests abandoned	Only simple chores preserved; very restricted interests, poorly maintained	No significant function in home				
Personal Care	Fully capable	e of self-care	Needs prompting	Requires assistance in dressing, hygiene, keeping of personal effects Requires much help to personal care; freque incontinence					

Current Alzheimer's Disease Treatments

- Approved therapies
 - Cholinesterase inhibitors (donepezil, galantamine, rivastigmine)
 - NMDA antagonists (memantine)
- Modest effect on cognitive symptoms
- Approved for mild, moderate and severe dementia due to AD, but not MCI due to AD
- No effects on the underling brain pathology or disease course

Donepezil in mild to moderate AD: ADAS-Cog


Anti-amyloid therapy potential

 Accumulation of amyloid may be the initiating factor that leads to Alzheimer's Disease.

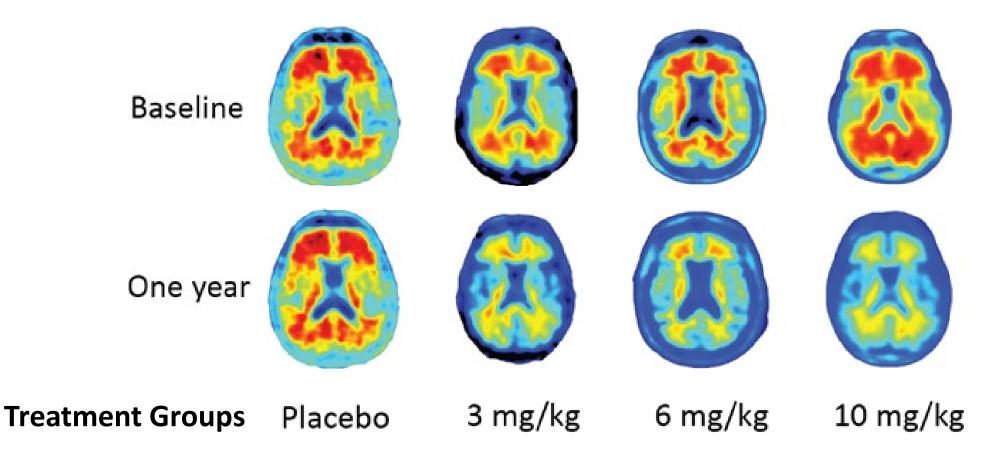
Removal of amyloid may interrupt this pathologic cascade.

 Early initiation of therapy before extensive neurodegeneration has taken place may be more successful

β-Amyloid aggregation pathway

- Aducanumab is a human IgG1 monoclonal antibody that binds aggregated forms of β-amyloid (oligomers, fibrils and plaques)
- Lecanemab (BAN2401) is a humanized IgG1 monoclonal antibody that binds to soluble Aβ aggregates (oligomers and protofibrils)
- Donanemab humanized IgG1 antibody directed at an N-terminal pyroglutamate Aβ epitope that is present only in established plaques 12

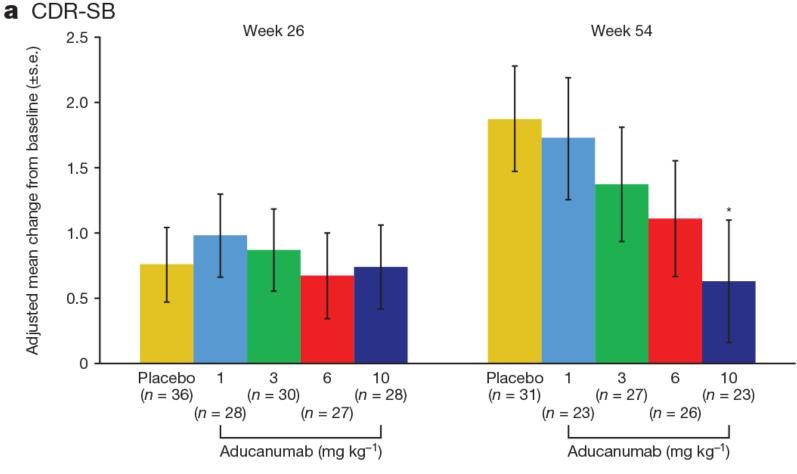
ARTICLE


The antibody aducanumab reduces Aß plaques in Alzheimer's disease

Jeff Sevigny¹*, Ping Chiao¹*, Thierry Bussière¹*, Paul H. Weinreb¹*, Leslie Williams¹, Marcel Maier², Robert Dunstan¹, Stephen Salloway³, Tianle Chen¹, Yan Ling¹, John O'Gorman¹, Fang Qian¹, Mahin Arastu¹, Mingwei Li¹, Sowmya Chollate¹, Melanie S. Brennan¹, Omar Quintero–Monzon¹, Robert H. Scannevin¹, H. Moore Arnold¹, Thomas Engber¹, Kenneth Rhodes¹, James Ferrero¹, Yaming Hang¹, Alvydas Mikulskis¹, Jan Grimm², Christoph Hock^{2,4}, Roger M. Nitsch^{2,4}§ & Alfred Sandrock¹§

Alzheimer's disease (AD) is characterized by deposition of amyloid- β (A β) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against A β to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated A β . In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal A β , and reduce soluble and insoluble A β in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain A β in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating—Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.

Aducanumab: Amyloid Scan Results:


Phase 1b: 103

Aducanumab: Clinical Dementia Rating Scale: Phase 1b: 103

CDR

- Orientation
- Memory
- Judgment & Problem Solving
- Community Affairs
- Home and Hobbies
- Personal Care
- Normal = 0
- Higher numbers = worse

Dose-response P < 0.05 at week 54 based on a linear contrast test

Aducanumab Phase 3 Trial Design

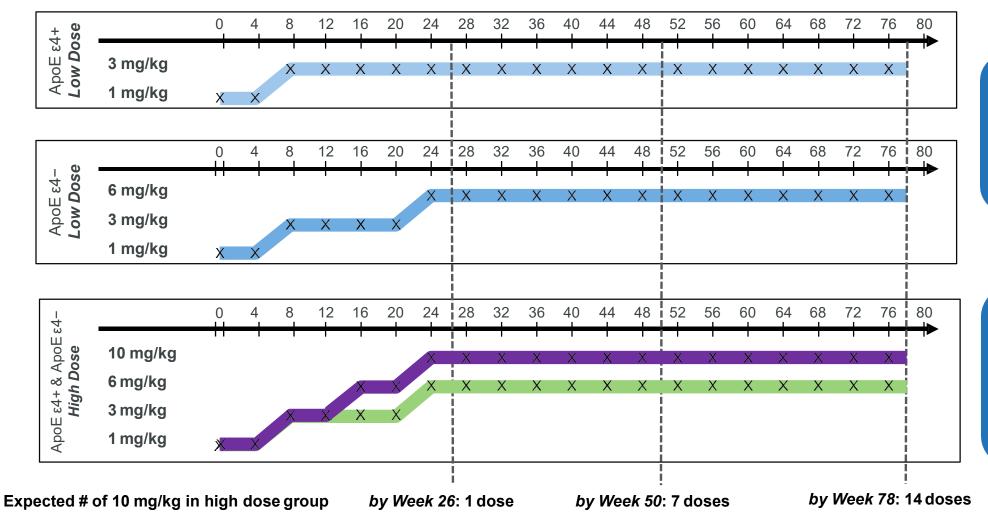
Studies 301 and 302

Engage and Emerge

Studies	Two 18-month, randomized, double-blind, placebo-controlled, Phase 3 studies				
Geography/ Sample size	3285 patients at 348 sites in 20 countries				
Population	 Early Alzheimer's disease (MCl due to Alzheimer's disease + mild Alzheimer's disease dementia) MMSE 24-30, CDR-G 0.5, RBANS ≤ 85, with confirmed amyloid pathology 				
Doses	 Two dosing regimens (low and high) and placebo; randomized 1:1:1 				
Primary endpoint	CDR-SB at 18 months				
Other endpoints	 Secondary: MMSE, ADAS-Cog 13, ADCS-ADL-MCI Sub-studies: amyloid PET, tau PET, CSF disease-related biomarkers 				

Countries with active sites included:

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Poland, Portugal, South Korea, Spain, Sweden, Switzerland, Taiwan, United Kingdom, United States

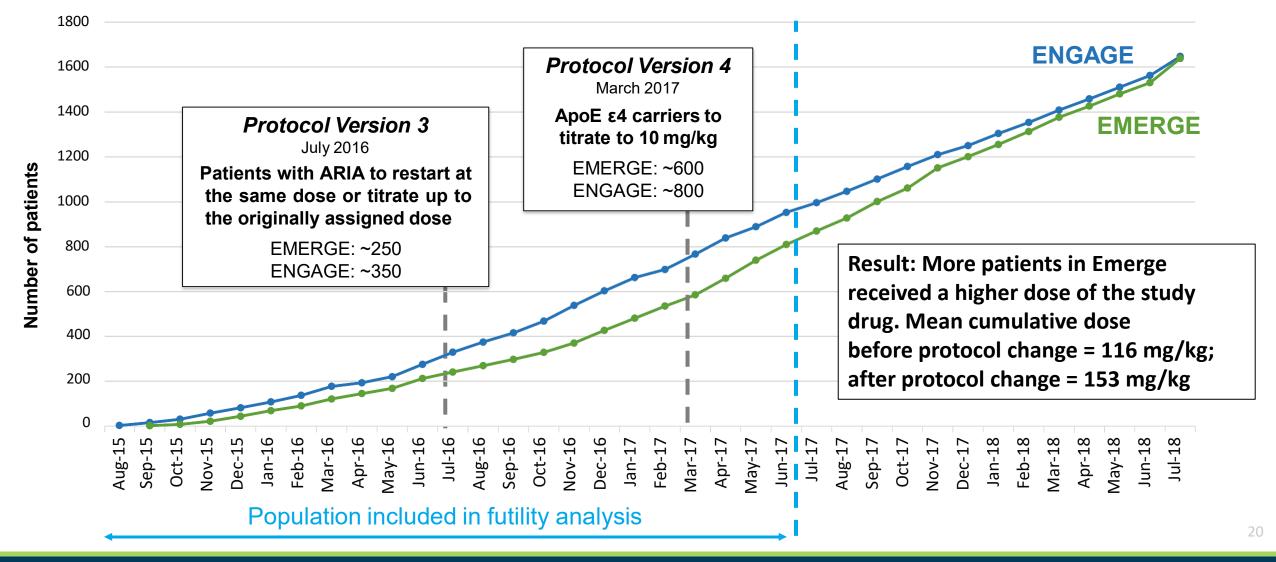

Exclusion criteria

- Significant medical, neurological or psychiatric disease
- Contraindications to having a brain MRI scan
- MRI
 - Acute or subacute hemorrhage
 - Prior macrohemorrhage (>1 cm on T2* sequence) or prior subarachnoid hemorrhage unless not due to vascular lesion
 - > 4 microhemorrhages
 - Superficial siderosis
- Use of medications with platelet anti-aggregant or anticoagulant properties except aspirin at a max dose of 325 mg/day

Baseline Demographics and Disease Characteristics Studies 301 and 302

	Study 301				Study 302			
	Placebo N=545	Low dose N=547	High dose N=545	Total N=1647	Placebo N=548	Low dose N=543	High dose N=547	Total N=1638
Age, years, mean (SD)	69.8 (7.72)	70.4 (6.96)	70.0 (7.65)	70.1 (7.45)	70.8 (7.40)	70.6 (7.45)	70.6 (7.47)	70.7 (7.43)
Sex, female, n (%)	287 (52.7)	284 (51.9)	292 (52.6)	863 (52.4)	290 (52.9)	269 (49.5)	284 (51.9)	843 (51.5)
Race, n (%)								
Asian	55 (10.1)	55 (10.1)	65 (11.7)	175 (10.6)	47 (8.6)	39 (7.2)	42 (7.7)	128 (7.8)
White	413 (75.8)	412 (75.3)	413 (74.4)	1238 (75.2)	431 (78.6)	432 (79.6)	422 (77.1)	1285 (78.4)
Education, years, mean (SD)	14.7 (3.66)	14.6 (3.77)	14.6 (3.72)	14.6 (3.71)	14.5 (3.68)	14.5 (3.63)	14.5 (3.60)	14.5 (3.63)
AD medications used, n (%)	299 (54.9)	317 (58.0)	313 (56.4)	929 (56.4)	282 (51.5)	281 (51.7)	285 (52.1)	848 (51.8)
ApoE ε4, n (%)								
Carriers	376 (69.0)	391 (71.5)	378 (68.1)	1145 (69.5)	368 (67.2)	362 (66.7)	365 (66.7)	1095 (66.8)
Non-carriers	167 (30.6)	156 (28.5)	176 (31.7)	499 (30.3)	178 (32.5)	178 (32.8)	181 (33.1)	537 (32.8)
Clinical stage, n (%)								
MCI due to AD	443 (81.3)	440 (80.4)	442 (79.6)	1325 (80.4)	446 (81.4)	452 (83.2)	438 (80.1)	1336 (81.6)
Mild AD	102 (18.7)	107 (19.6)	113 (20.4)	322 (19.6)	102 (18.6)	91 (16.8)	109 (19.9)	302 (18.4)
CDR-SB, mean (SD)	2.40 (1.012)	2.43 (1.014)	2.40 (1.010)	2.41 (1.012)	2.47 (0.999)	2.46 (1.011)	2.51 (1.053)	2.48 (1.021)
MMSE, mean (SD)	26.4 (1.73)	26.4 (1.78)	26.4 (1.77)	26.4 (1.76)	26.4 (1.78)	26.3 (1.72)	26.3 (1.68)	26.3 (1.73)

EMERGE and ENGAGE: Initial dose regimen



- Low dose titrated to 3 or 6 mg/kg
- Maintained throughout study

- High dose titrated to 6 or 10 mg/kg for Protocol Versions 1-3
- High dose titrated to 10 mg/kg for Protocol Version 4 and higher

ApoE, apolipoprotein E.

Enrollment and timing of key protocol amendments

An Alzheimer's Drug Trial Gave Me Hope, and Then It Ended

I was a small piece in the search to find a cure. Now I feel as if I'm getting erased, and medical science doesn't have any answers.

I knew that participating in a clinical trial for an Alzheimer's drug was unlikely to help me. But it gave me hope.

- Futility analysis results announced
 March 21, 2019
- "Independent data monitoring committee advises aducanumab unlikely to meet primary endpoints."
- The trial was stopped... but data collection continued.

By Phillip S. Gutis

March 22, 2019

'Reports of My Death Are Greatly Exaggerated.'

Signed, Aducanumab (alzforum 10/24/19)

- October 22, 2019: Aducanumab resurrected
- Additional data collected after futility analysis → Full analysis
- Full analysis hits primary endpoint and secondary outcomes, in 1/2 Phase 3 trials (Emerge: 302)
- Second trial (Engage: 301) negative, but is said to show supportive data from those with adequate exposure (high dose)
- Biogen files for a biologics licensing application with the FDA

November 9, 2020: FDA advisory committee for aducanumab votes against approval, as there is no reason to favor the positive result in one phase 3 trial over the negative result in the other.

POLICY FORUM 🗈 Open Access 🚾 🕦

Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019

David S. Knopman 🔀, David T. Jones, Michael D. Greicius

First published: 01 November 2020 | https://doi.org/10.1002/alz.12213 | Citations: 5

See related article here https://doi.org/10.1002/alz.12235

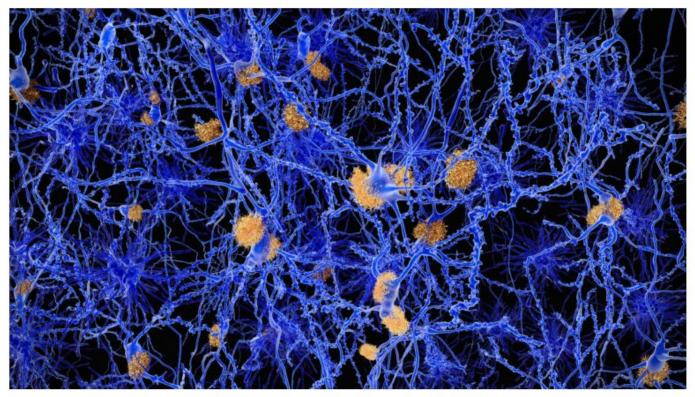
Alzheimer's Research & Therapy

Home About Articles Submission Guidelines

Viewpoint | Open Access | Published: 10 May 2021

Aducanumab produced a clinically meaningful benefit in association with amyloid lowering

<u>Jeffrey Cummings</u> [™], <u>Paul Aisen</u>, <u>Cynthia Lemere</u>, <u>Alireza Atri</u>, <u>Marwan Sabbagh</u> & <u>Stephen Salloway</u>


Alzheimer's Research & Therapy 13, Article number: 98 (2021) Cite this article

4250 Accesses | 106 Altmetric | Metrics

If the FDA approves Biogen's Alzheimer's treatment, I won't prescribe it

By Jason Karlawish May 30, 2021

Reprints

Biogen's experimental drug, aducanumab, may clear amyloid plaque from the brain, but the company hasn't made a convincing case that it slows the progression of Alzheimer's disease.

Alzheimer's & Dementia

Help & Support

Research

Get Involved

Your Chapter

Search O

GET INVOLVED

It's a New Day in the Fight Against Alzheimer's — Aducanumab Approved

The Food and Drug Administration (FDA) approval of aducanumab (AduhelmTM) from Biogen — the first drug to slow the progression of Alzheimer's disease — is a milestone in the treatment of the disease and a beginning of a completely new future for Alzheimer's treatments. This treatment, while not a cure, is pivotal and current progress in science is significant. We expect this will be the first of a number of treatments to come.

A new type of Alzheimer's treatment, aducanumab addresses the disease in a way that has never been done before. This therapy slows progression of the disease, rather than only addressing symptoms.

VIEWPOINT

Aducanumab, Amyloid Lowering, and Slowing of Alzheimer Disease

Stephen Salloway, MD, MS, and Jeffrey Cummings, MD, ScD

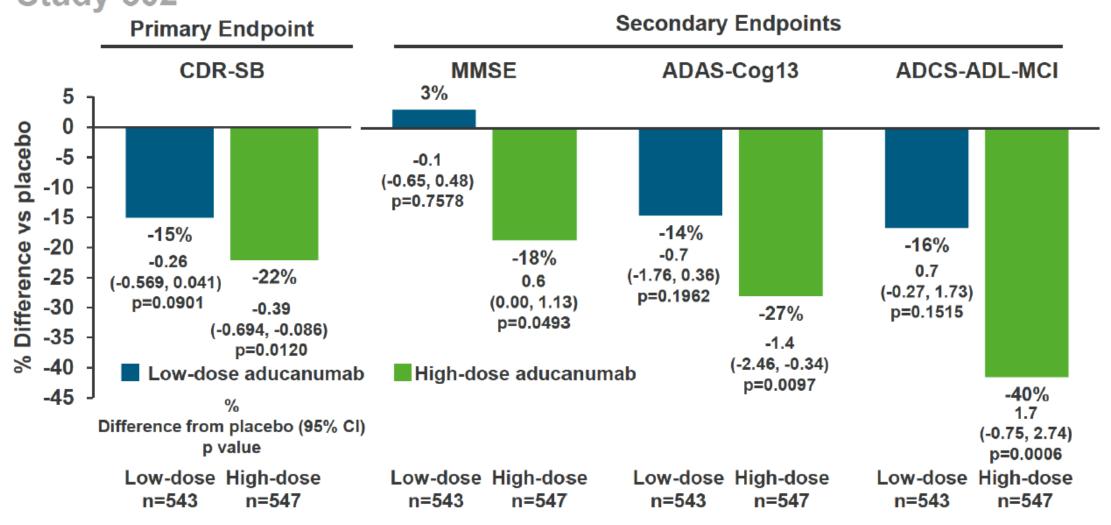
Neurology® 2021;97:543-544. doi:10.1212/WNL.000000000012451

Correspondence

Dr. Salloway ssalloway@butler.org

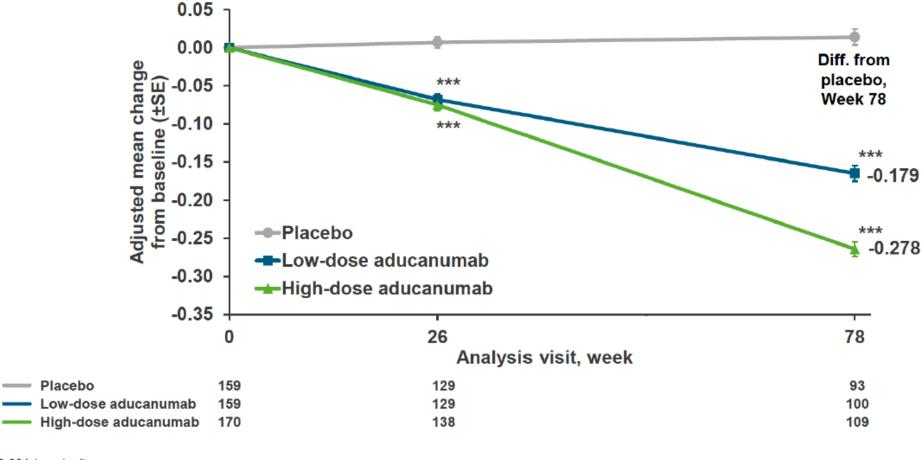
VIEWPOINT

Prescribing Aducanumab in the Face of Meager Efficacy and Real Risks

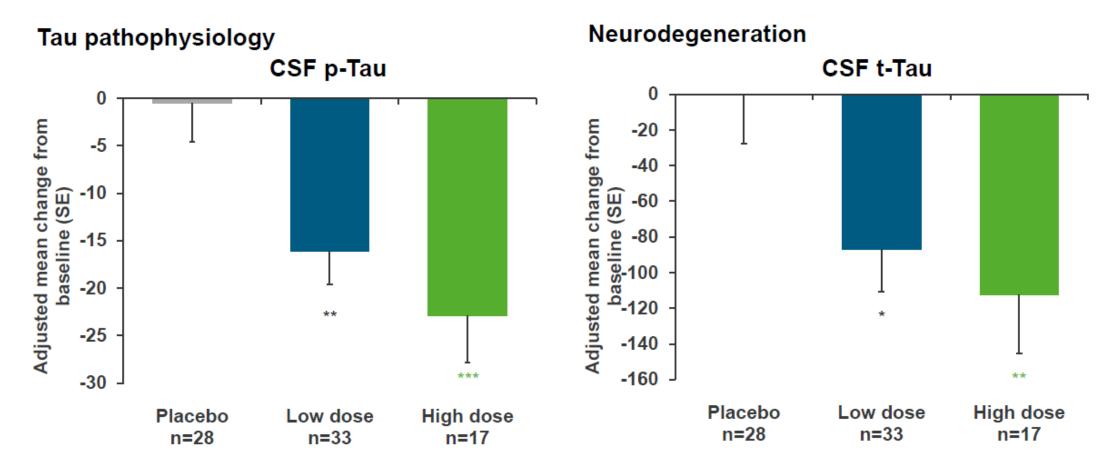

David S. Knopman, MD, and Joel S. Perlmutter, MD

Neurology® 2021;97:545-547. doi:10.1212/WNL.000000000012452

Correspondence

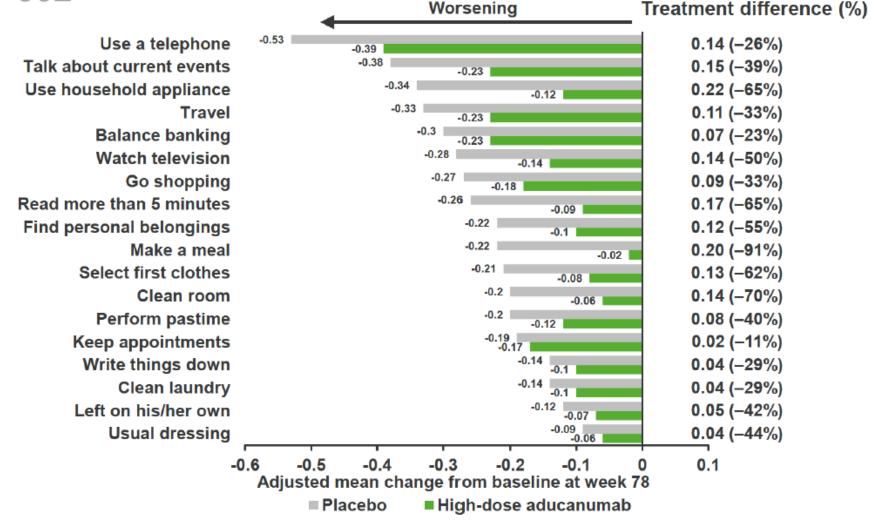

Dr. Knopman knopman@mayo.edu

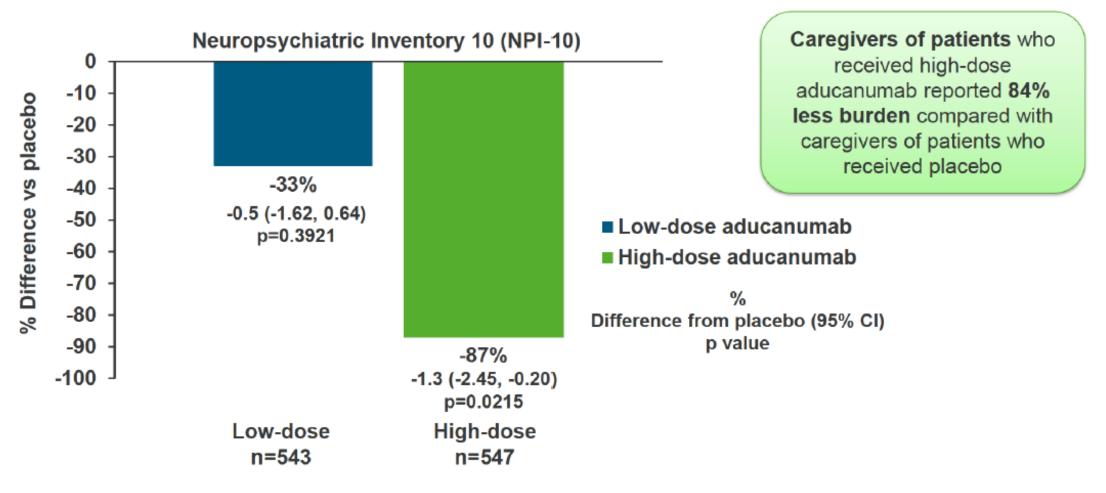
High-dose Aducanumab Met All Clinical Endpoints Assessing Cognition and Function at Week 78 Study 302


n=numbers of randomized and dosed participants included in the analysis

Study 302 Amyloid PET Confirms Dose-Dependent Target Engagement as Demonstrated in Study 103 Study 302

*** p<0.001 (nominal).


Study 302: Aducanumab Reduced Biomarkers of Alzheimer's Disease-specific Tau Pathophysiology and Neurodegeneration


*p<0.05, ** p<0.01, *** p<0.001 (nominal) n=numbers of randomized and dosed participants included in the analysis

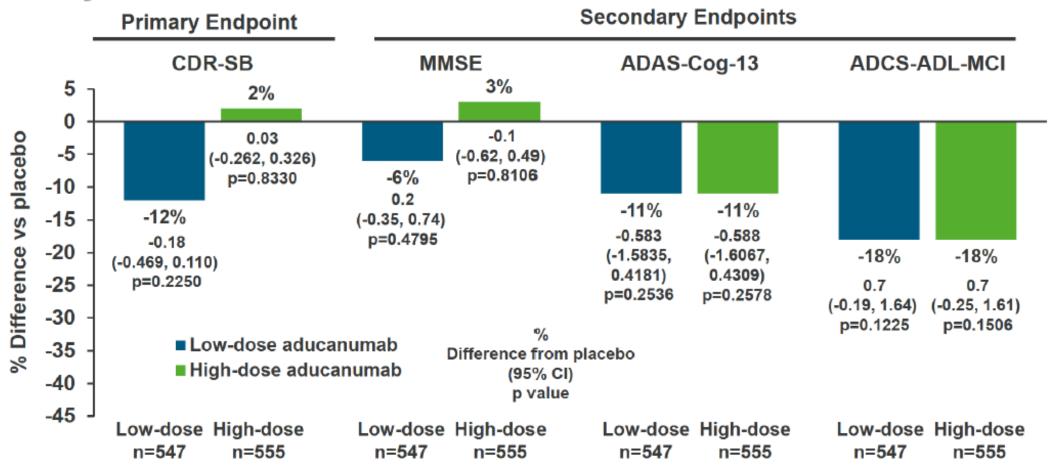
Aducanumab Reduced Functional Decline in Activities of Daily Living: ADCS-ADL-MCI

Study 302

Treatment Effect Observed in Exploratory Clinical Endpoint of NPI-10 Assessing Behavior at Week 78 Study 302

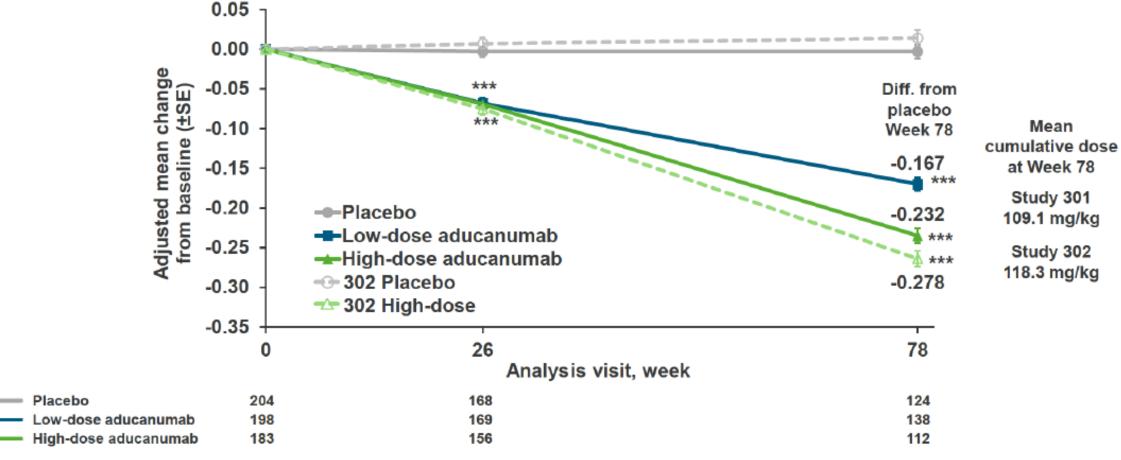
n=numbers of randomized and dosed participants included in the analysis

Summary of 302 study: Emerge


Met its primary and secondary objectives in the high dose arm

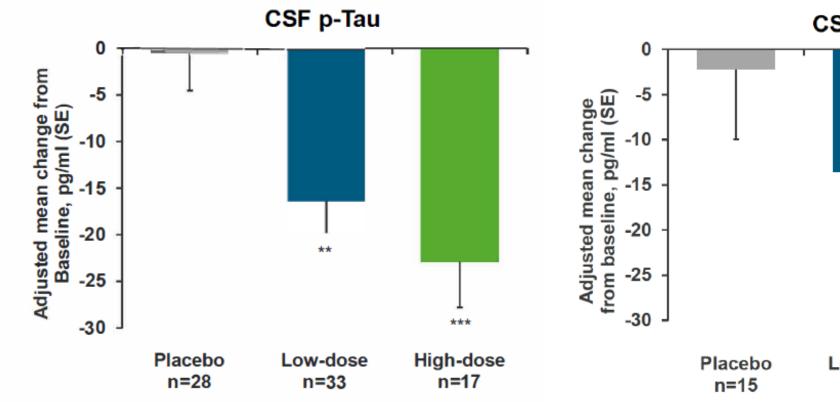
 Intermediate effect observed in the low-dose group, indicative of a dose-response relationship

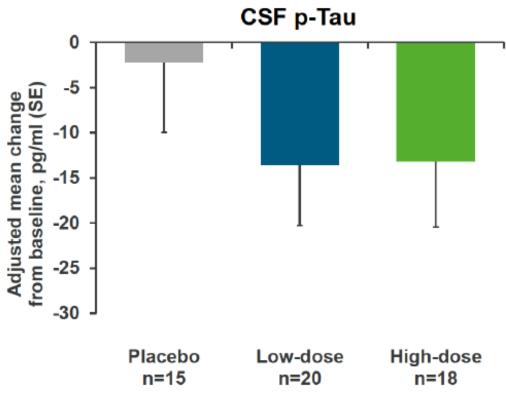
 Substantial effects on objective measures of underlying Alzheimer's disease pathophysiology


Study Did Not Meet Primary and Secondary Clinical Endpoints

Study 301

n=numbers of randomized and dosed participants included in the analysis

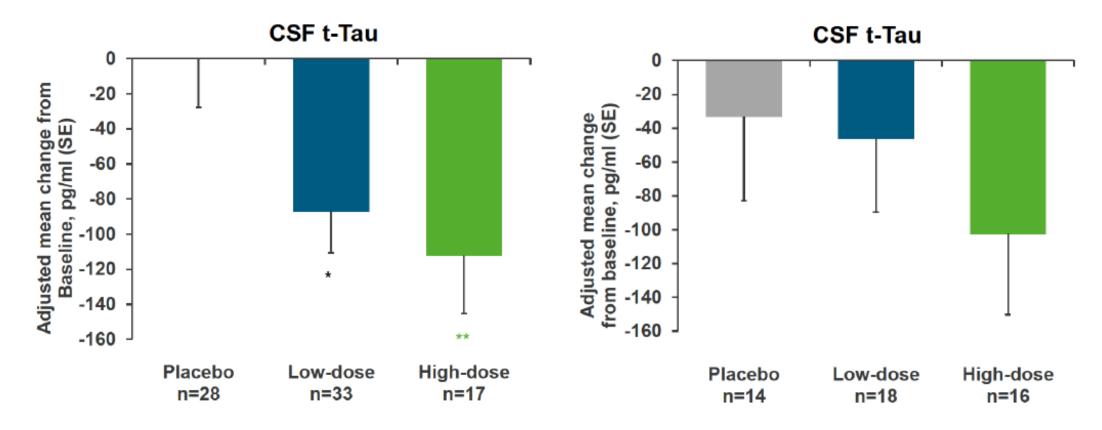

Amyloid PET Demonstrated Dose-Dependent Target Engagement With High-Dose Group Lower Than in Study 302 Study 301



^{***} p<0.001 (nominal).

n=numbers of randomized and dosed participants included in the analysis

Aducanumb effects on Biomarkers of Alzheimer's Disease-Specific Tau Pathophysiology: study 302 vs. 301

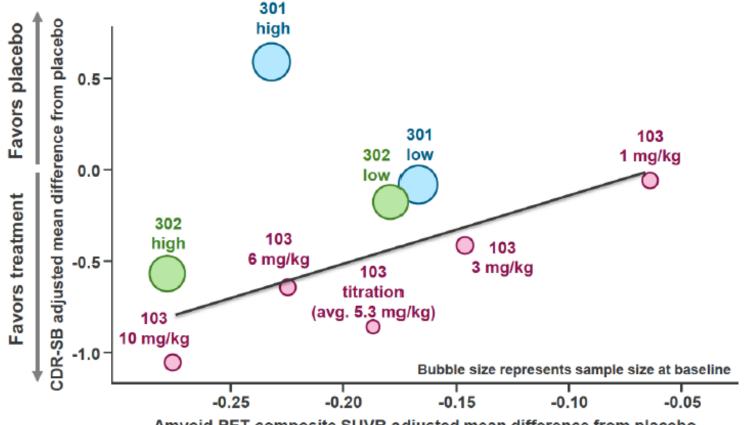

n=numbers of randomized and dosed participants included in the analysis

Study 302

Study 301

^{**} p<0.01, *** p<0.001 (nominal).

Aducanumb effects on Biomarkers of Neurodegeneration: studies 302 vs. 301


^{*} p<0.05, ** p<0.01 (Nominal) n=numbers of randomized and dosed participants included in the analysis

Study 302

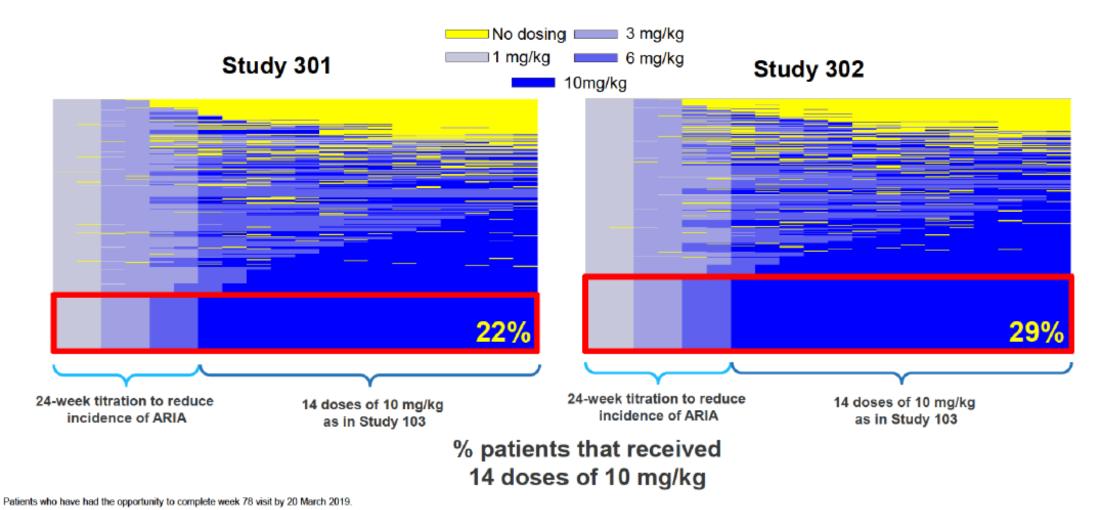
Study 301

Study 301 High-Dose Group Diverged From an Otherwise Consistent Association Between Aß Reduction and Slowing of Clinical Decline

Studies 301, 302, and 103

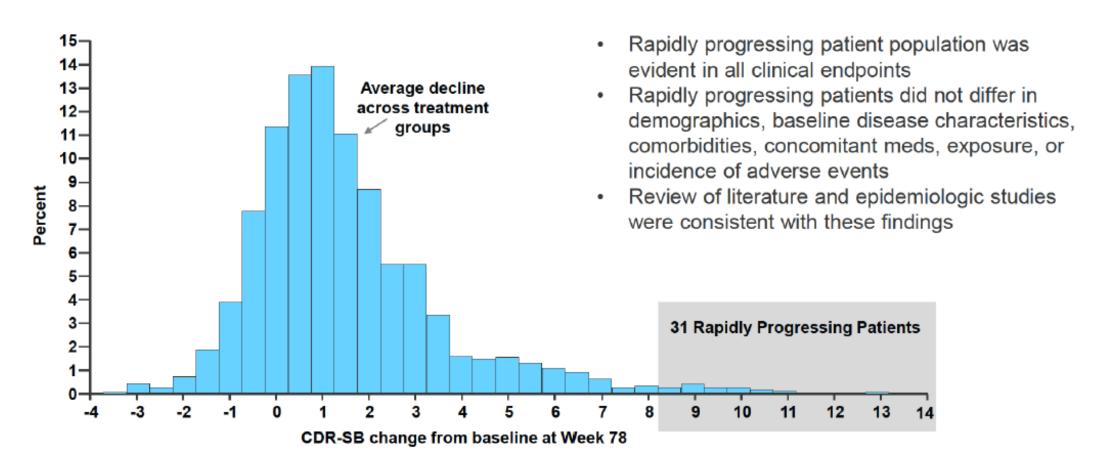
Amyoid PET composite SUVR adjusted mean difference from placebo ← Greater extent of amyloid removal

We are **AdvocateAuroraHealth**


Summary of study 301: Engage

Study 301 failed to meet its primary or secondary objectives

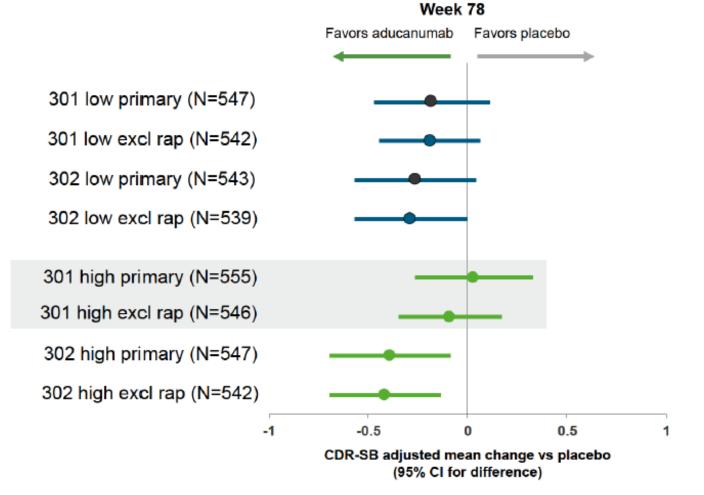
- Methodologic concerns
 - Lower amount of study drug received in study 301
 - More rapid progressors in study 301


Exposure to Aducanumab 10 mg/kg Was Lower in Study 301 Than in Study 302

Studies 301 and 302

Distribution of CDR-SB Changes Include a Small Number CR-8 of Especially Rapidly Progressing Patients

Studies 301 and 302



Histogram displays data pooled from all three treatment groups from both studies.

Excluding Rapid Progressors Had the Greatest Impact on CDR-SB in Study 301 High-Dose Group

Studies 301 and 302

	Rapid progressors, n		
Study	302	301	
Placebo	4	4	
low	4	5	
high	5	9	

Differences in Study 301 Are Sufficiently Understood so as Not to Detract From Study 302

 Demographics disease characteristics, and frequency, severity and management of ARIA were all similar between studies

- Differences between studies were largely driven by
 - Lower exposure to 10 mg/kg dosing in Study 301
 - Imbalance in number and distribution of rapid progressing Alzheimer's disease patients

... "Nothing to see here. Move along."

Establishing the Substantial Effectiveness of Aducanumab

Study 302	A positive study with robust and internally consistent results
Study 103	An independent, second study providing supportive evidence
Study 301	A failed study with reasons for difference between studies in results understood and post hoc subgroups supportive of Study 302 and 103

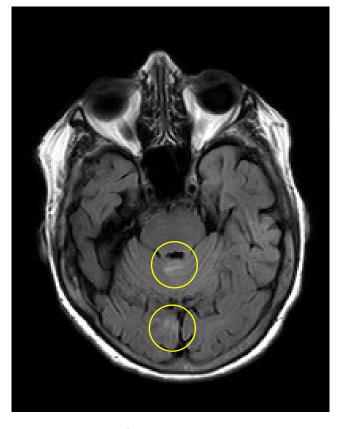
Consistent exposure to 10 mg/kg aducanumab is effective at reducing the clinical decline in patients with early symptomatic Alzheimer's disease

Methodologic concerns

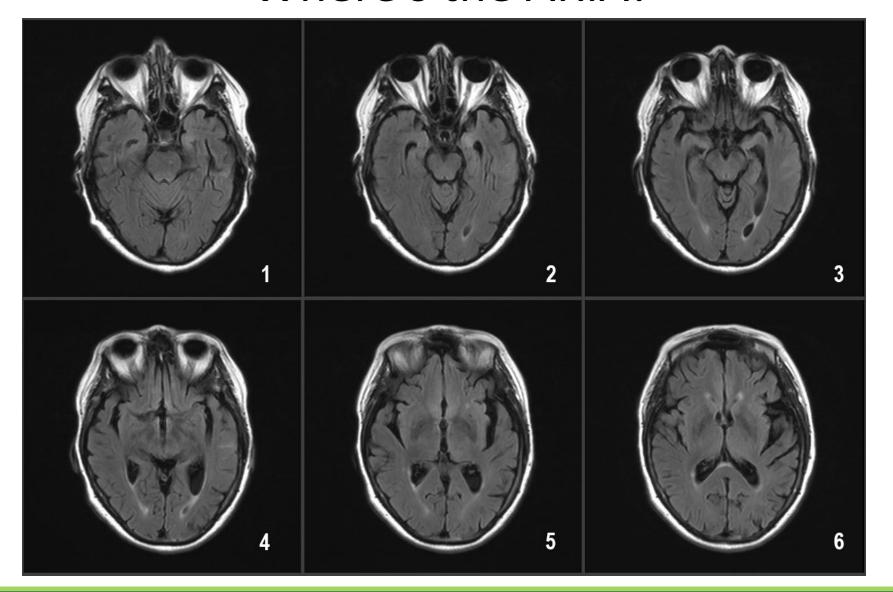

- Analysis of a trial stopped for futility
 - More likely to under- rather than overestimate an effect.
- Use of the Phase 1b trial to provide a "second" positive trial
 - Phase 1b independent but small. Not the same as a positive phase 3 trial.
- Analyses excluding "rapid progressors"
 - No prior definition of rapid progressors. No prior plan to analyze data this way. It is not valid to remove subjects based on outcomes of a trial.
- Effect of functional unblinding due to ARIA
 - Potentially could affect CDR particularly in ApoE4+, but unlikely to affect MMSE. Future studies might account for this in the placebo group.
- Lack of racial and ethnic diversity in the clinical trials

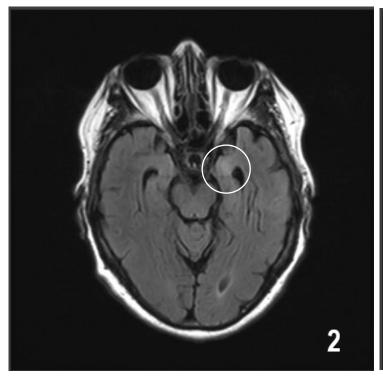
Methodologic concerns

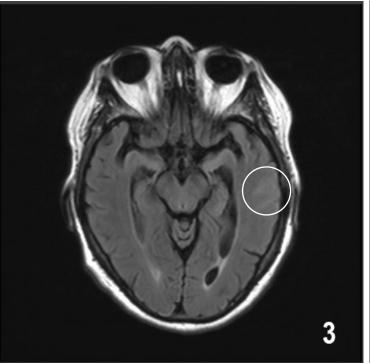
- Post-hoc analysis of trial results.
 - Biogen started with premise that drug was effective, and used an exploratory analysis as evidence (i.e., Looked at Engage PV4 with OTC). Increases risk of type 1 error due to multiple comparisons. Story was still not consistent.)
- Use of CDR as an endpoint
 - Scale is not used in clinical practice. What is clinically significant? (1-2 points)
- Was follow-up long enough (78 weeks)?
 - Is the drug effective in the long term? What is the long-term safety profile?
- Unknown duration of treatment stopping not assessed

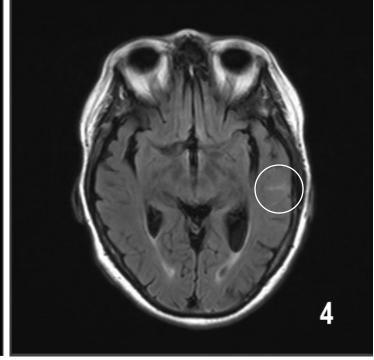

ARIA-H

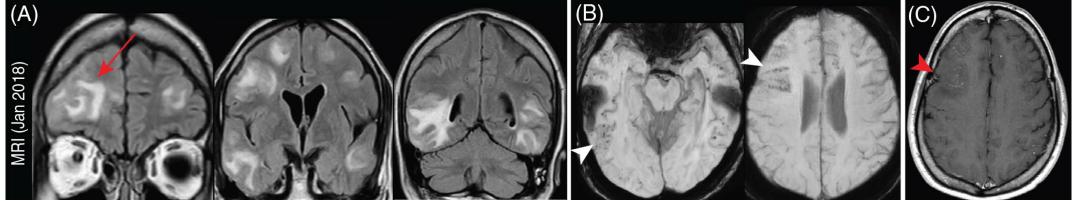
Microhemorrhage

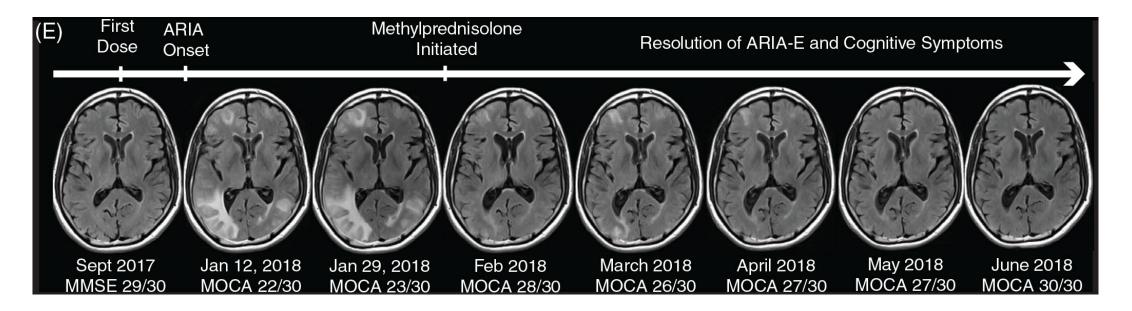

Best viewed on gradient echo and susceptibility weighted sequences


ARIA-E




Best viewed on a FLAIR sequence


Where's the ARIA?



He developed sudden-onset explosive headaches and fluctuating confusion, and he self-diagnosed alexia without agraphia. He presented to the hospital, where his systolic blood pressure was 206/116 on admission to the intensive care unit (ICU), where he received intravenous nicardipine.

Note: Methylprednisolone has not been definitively shown to treat ARIA-E

Table 3. Occurrence of ARIA in the entire population and in participants with and without the APOE-4 allele in the two pivotal trials combined (10 mg/kg dose) (5)

Participant Group	Placebo	Aducanumab
ARIA-E and ARIA-H (overall population)	10%	41%
ARIA-E (overall population)	2.7%	35.2%
ARIA-E with symptoms	10.3%	26%
ARIA-H (overall population)	8.7%	28.3%
ARIA-E APOE-4 carriers	2.2%	43%
ARIA-E APOE-4 noncarriers	3.9%	20.3%
Trial discontinuations due to ARIA	0.6%	6.2%

Symptomatic ARIA-E: mild 67.7%, moderate 28.3%, and severe 4% The most common symptoms reported were confusion or altered mental status (5%), dizziness (4%), visual disturbances (2%), and nausea (2%).

See paper for ARIA management.

J Prev Alz Dis 2021; Published online July 20, 2021, http://dx.doi.org/10.14283/jpad.2021.41

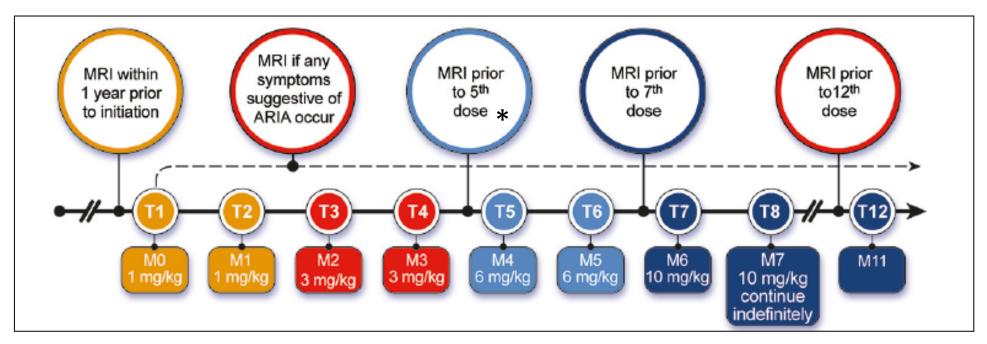
Special Article

C The Author(s)

Aducanumab: Appropriate Use Recommendations

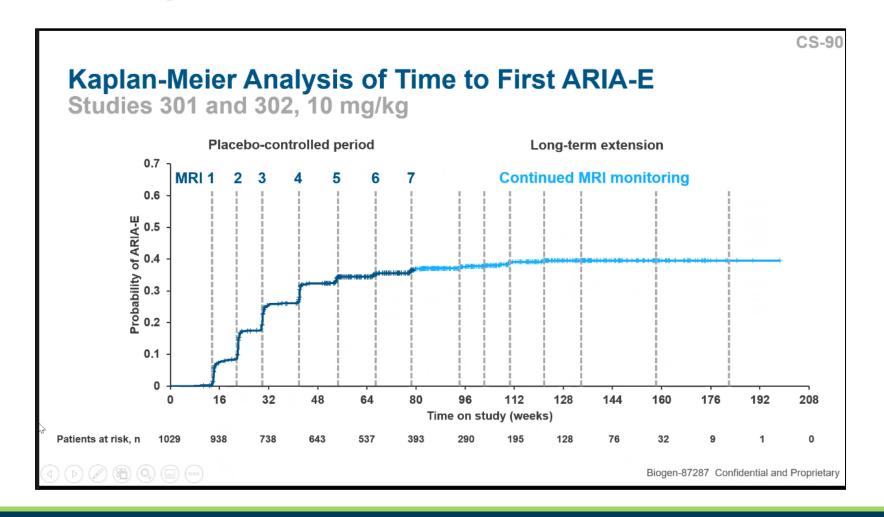
J. Cummings¹, P. Aisen², L.G. Apostolova³, A. Atri⁴, S. Salloway⁵, M. Weiner⁶

Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA;
 Alzheimer's Treatment Research Institute, University of Southern California, San Diego, CA, USA;
 Departments of Neurology, Radiology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA;
 Banner Sun Health Research Institute, Banner Health, Sun City, AZ;
 Center for Brain/Mind Medicine, Harvard Medical School, Boston, MA, USA;
 Butler Hospital and Warren Alpert Medical School of Brown University, Providence RI, USA;
 Departments of Radiology and Biomedical Imaging, Medicine, Psychiatry and Neurology, University of California San Francisco, CA, USA


Corresponding Author: Jeffrey Cummings, MD, ScD, 1880 Opal Valley Street, Henderson, NV 89052, jcummings@cnsinnovations.com, T: 702-902-3939

Patient item	Appropriate use in clinical practice
Age	50-85 (consider older/younger if all other criteria met)
Diagnosis	Clinical criteria for MCI due AD or mild AD dementia
Scale scores	MMSE: 21-30 or equivalent, such as MoCA: 17-30
Amyloid status	Amyloid PET positive (visual read), CSF consistent with AD
ApoE genotyping	Discuss. Inform greater ARIA risk with ApoE4 positive
Neuro exam	Exclude non-AD neurological disorders
Cardiovascular history	Stable cardiovascular status (clinical judgment)
Medical history	Stable medical conditions (clinical judgment)
Psychiatric history	Stable psychiatric status (clinical judgment)
Reproductive status	Exclude if pregnant or breast feeding; if female patient of childbearing age, practice contraception.
Clotting status	Max aspirin 325 mg/day, no other anti-platelet, anticoagulant medications
Concomitant meds	Can be on standard cholinesterase inhibitors and/or memantine
Baseline MRI	Exclude if acute or subacute hemorrhage, macrohemorrhage, >4 microhemorrhages, cortical or lacunar infarct (>1.5 cm), >1 area superficial siderosis, diffuse WM disease or cannot have an MRI
Care support	May live independently or with a care partner
Informed consent	Document understanding of requirements for therapy (monthly) and expected outcome (slowing of decline, not symptomatic improvement)
ummings et al I Prev Alz Dis 20	021 We are Adversto Aurera Health Care: We are Adversto Aurera Health

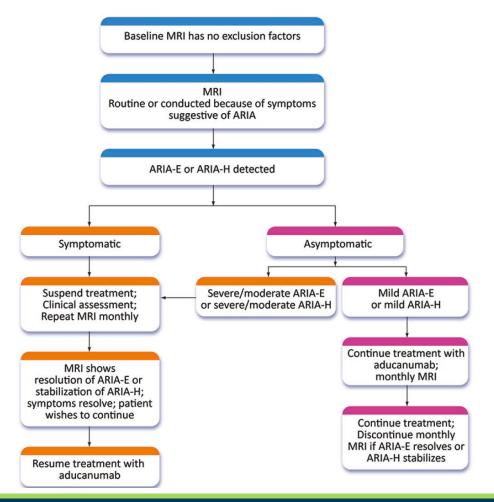
Special populations


Consider aducanumab although information is incomplete	Avoid using aducanumab	
Autosomal Dominant AD	Alzheimer's disease but not in trials	
Atypical AD (logopenic aphasia, posterior cortical atrophy, frontal AD, corticobasal syndrome)	Moderate AD	
	Severe AD	
	Preclinical AD	
	Amyloid positive but not in trials	
	Down syndrome	
	Dementia with Lewy bodies	
	Cerebral amyloid angiopathy	

Aducanumab dosing and MRI schedule

^{*} Added in appropriate use recommendations

Time to first ARIA-E


ARIA Management

ARIA-E

- Mild: mild FLAIR hyperintensity, affecting an area max <5 cm. Only a single region of involvement
- Moderate: FLAIR hyperintensity measuring max 5-10 cm or more than one site
- Severe: FLAIR hyperintensity max >10 cm in one or more areas

ARIA-H

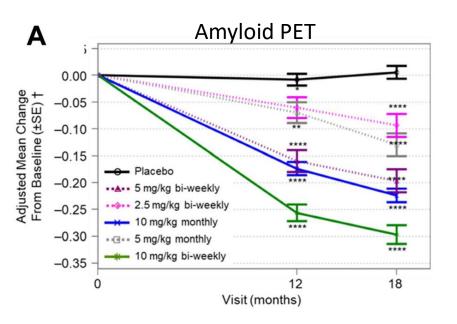
- Superficial Siderosis Severity
 - Mild: single focus of hemosiderosis
 - Moderate: 2 focal areas of hemosiderosis
 - Severe: more than 2 focal areas of hemosiderosis
- Microhemorrhage Severity
 - Mild: 1-4 microhemorrhages
 - Moderate: 5-9 microhemorrhages
 - Severe: 10 or more microhemorrhages

Cost considerations

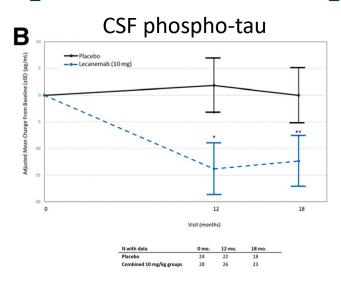
- Drug cost = \$56,000 per year
- Additional costs = MRI scans, infusions, examinations, care of complications
- Paid for under Medicare part B = 20% copay
- Currently available only to wealthy patients (Biogen does have a support program)
- Medicare National Coverage Determination pending
- If covered by Medicare treatment will still have steep costs for many patients.
- What about treatment of younger patients not yet on Medicare?

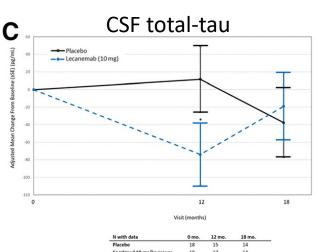
RESEARCH Open Access

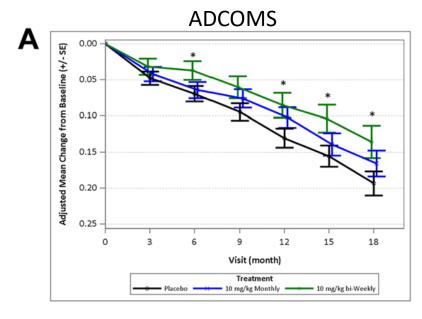
A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody



Chad J. Swanson¹, Yong Zhang¹, Shobha Dhadda¹, Jinping Wang¹, June Kaplow¹, Robert Y. K. Lai², Lars Lannfelt^{3,4}, Heather Bradley¹, Martin Rabe¹, Akihiko Koyama¹, Larisa Reyderman¹, Donald A. Berry⁵, Scott Berry⁵, Robert Gordon², Lynn D. Kramer¹ and Jeffrey L. Cummings^{6*}


Inclusion


- Age 50- 90 years with mild cognitive impairment due to AD or mild AD dementia.
- Confirmed amyloid positive via amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) Aβ1–42
- Objective impairment in episodic memory (on Wechsler Memory Scale-IV Logical Memory II
- Mini Mental State Examination (MMSE) score ≥ 22 at screening and baseline
- Naïve to or on stable dose (12 weeks) of approved AD medications


Lecanemab (BAN2401) Phase 2b

N (PET-SUVr)	0 Months	12 Months	18 Months
Placebo	99	96	88
2.5 mg/kg biweekly	28	27	23
5 mg/kg monthly	28	27	23
5 mg/kg biweekly	27	25	24
10 mg/kg monthly	89	88	82
10 mg/kg biweekly	44	43	37

N (ADCOMS)	0 Months	3 Months	6 Months	9 Months	12 Months	15 Months	18 Months
Placebo	238	226	216	201	187	172	160
10 mg/kg monthly	246	235	208	177	165	152	146
10 mg/kg biweekly	152	143	130	105	93	89	79

Lecanemab adverse events

				Lecanemab		
Category	Placebo (n = 245) n (%)	2.5 mg/kg Biweekly (n = 52) n (%)	5 mg/kg Monthly (n = 51) n (%)	5 mg/kg Biweekly (n = 92) n (%)	10 mg/kg Monthly (n = 253) n (%)	10 mg/kg Biweekly (n = 161) n (%)
Any TEAE	216 (88.2)	46 (88.5)	48 (94.1)	81 (88.0)	238 (94.1)	39 (86.3)
Treatment-related TEAE	65 (26.5)	23 (44.2)	25 (49.0)	31 (33.7)	135 (53.4)	76 (47.2)
Serious adverse event	43 (17.6)	10 (19.2)	4 (7.8)	16 (17.4)	31 (12.3)	25 (15.5)
Deaths	2 (0.8)	2 (3.8)	0	1 (1.1)	2 (0.8)	0
AE leading to discontinuation	15 (6.1)	7 (13.5)	4 (7.8)	10 (10.9)	47 (18.6)	24 (14.9)
ARIA-E	2 (0.8)	1 (1.9)	1 (2.0)	3 (3.3)	25 (9.9)	16 (9.9)
ApoE4-positive ($n = 436$)	2 (1.1)	1 (2.6)	1 (2.5)	3 (3.6)	23 (10.2)	7 (14.3)
ApoE4-negative($n = 112$)	0	0	0	0	2 (7.1)	9 (8.0)

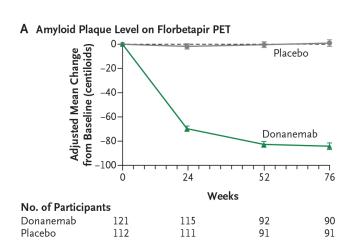
TEAE, treatment emergent adverse event; ARIA-E, amyloid-related imaging abnormalities-edema; ApoE4, apolipoprotein E4

- ARIA-H (new cerebral microhemorrhages, cerebral macrohemorrhages, and superficial siderosis)
 - 13 (5.3%) subjects in the placebo group (N = 245)
 - 65 (10.7%) subjects in the lecanemab groups (N = 609).

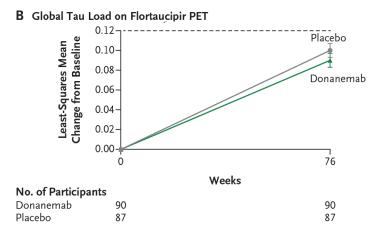
The NEW ENGLAND JOURNAL of MEDICINE

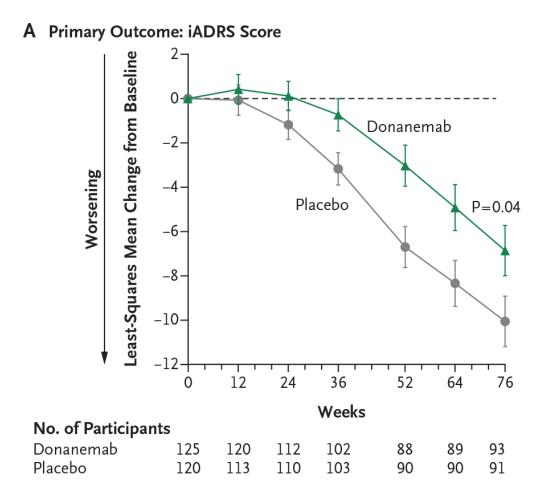
ESTABLISHED IN 1812

MAY 6, 2021

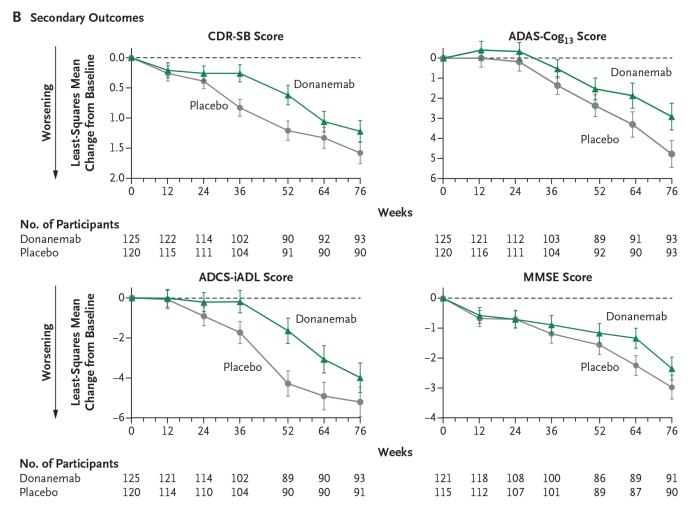

VOL. 384 NO. 18

Donanemab in Early Alzheimer's Disease


Mark A. Mintun, M.D., Albert C. Lo, M.D., Ph.D., Cynthia Duggan Evans, Ph.D., Alette M. Wessels, Ph.D., Paul A. Ardayfio, Ph.D., Scott W. Andersen, M.S., Sergey Shcherbinin, Ph.D., JonDavid Sparks, Ph.D., John R. Sims, M.D., Miroslaw Brys, M.D., Ph.D., Liana G. Apostolova, M.D., Stephen P. Salloway, M.D., and Daniel M. Skovronsky, M.D., Ph.D.


- Age 60 85 years with mild cognitive impairment due to AD or mild AD dementia.
- Mini–Mental State Examination score of 20 to 28
- Confirmed amyloid positive via amyloid positron emission tomography (PET)
- Tau PET SUVR 1.10 1.46

Donanemab Outcomes


	Difference Mean	Amyloid-Negative Status, Donanemab		
	Donanemab vs placebo	95% CI		
	cent	iloids	no. (%)	
Wk 24	-67.83 ± 3.16	-74.04 to -61.61	46 (40.0)	
Wk 52	-82.30 ± 3.41	-89.02 to -75.59	55 (59.8)	
Wk 76	-85.06 ± 3.87	-92.68 to -77.43	61 (67.8)	

Trial powered to show 50% slowing of decline

Donanemab Outcomes

Not significant

Donanemab Adverse events

ARIA Event∬	Donanemab (N=131)	Placebo (N = 125)
ARIA-E or ARIA-H — no. (%)	51 (38.9)	10 (8.0)
ARIA-E		
Any — no. (%)	36 (27.5)	1 (0.8)
Symptom status — no. (%)		
Asymptomatic	28 (21.4)	0
Symptomatic	8 (6.1)	1 (0.8)
APOE genotype — no./total no. (%)		
$\varepsilon 2/\varepsilon 3$	0/1	0/1
$\varepsilon 2/\varepsilon 4$	0/2	0/2
$\varepsilon 3/\varepsilon 3$	4/35 (11.4)	0/31
$\varepsilon 3/\varepsilon 4$	21/68 (30.9)	0/62
$\varepsilon 4/\varepsilon 4$	11/25 (44.0)	1/28 (3.6)
ARIA-H — no. (%)		
Any	40 (30.5)	9 (7.2)
Microhemorrhage	26 (19.8)	6 (4.8)
Superficial siderosis	23 (17.6)	3 (2.4)
Macrohemorrhage	0	0

Changes to practice

- Workup will need to be expedited. Prolonged evaluation may mean a patient becomes ineligible for treatment during the evaluation
- Alzheimer's disease previously a diagnosis of exclusion. Diagnostic workflow will need to include biomarkers in treatment eligible patients
 - Amyloid PET (no insurance), CSF (invasive), blood tests (early days, not reimbursed by insurance)
- Genetic testing ApoE because of drug adverse event risks
- Treatment exclusions: MRI contraindicated, or patient on anticoagulation
- Patients will need closer follow-up.
- Shared decision-making will be very important.

End