Jasbir S Sra, MD

COI: Many features invented and being used in Navik 3D Product

AI IN ELECTROPHYSIOLOGY

- Background
- Data Analysis/Training
- Diagnosis/Treatment
- Prediction

Image
 Recognition Catheters,
 Cryoballoon, left
 atrial appendage
 devices, valves,
 leads for heart
 failure

- ✓ Signal Processing
- ✓ Inference
- ✓ Prediction

MACHINE LEARNING TECHNIQUES OVERVIEW

Supervised learning

- labeled data (Frames from Fluoro) is used to train Knowing the results for every input, we let the algorithm determine a function that maps it to an output
- We keep correcting the model every time it makes a prediction/classification mistake

Conventional unsupervised

 Data is without labels and we introduce the dataset to our algorithm hoping that it'll unveil some hidden structure within it.

Reinforcement learning

- Solves <u>a different kind of problem</u>
- In RL, there's an agent that interacts with a certain environment, thus changing its state, and receives rewards (or penalties) for its input

Background

- Artificial neural networks are computing systems that are inspired by, but not identical to, biological neural networks
- In a fully connected AI neural network each neuron has a mathematical model that defines if it is activated or not based on the activation in the connections with neurons in the previous layer and a weights assigned to each connection.
- The mathematical model of the neuron usually is a non linear function, that has a threshold (which can be adjusted) that defines if there is an activation based on the activations in the previous layer or not.

Artificial neural network A computer representation of knowledge that attempts to mimic the neural networks of the human brain.

AI Neural Network

CONVOLUTIONAL NEURAL NETWORKS (CNN)

Simple but best for Image processing

Example 1 (Learning features)

ResNets are currently by far state of the art Convolutional Neural Network models and are the default choice for using convolutional neural network in practice

Example 2 (Strides)

Stride is how much a filter is shifted on an image with each step. It is the size of the small rectangle that is moved over the image to get the feature map

CNN are the neural network most commonly applied to analyzing visual imagery

Ensemble Learning

Using Multiple Neural Network Models Simultaneously

AI: Progress and Roadmap

- Live Tracking using CNN and blob detection
- ✓ Auto Correct using ResNet 20

 Using DGX for Training multiple models
 Replace CNTK with TensorFlow
 Faster RCNN for object detection and classification

2017-2018	April 2018	June 2018	October 2018	
	 ✓ Generic Model for Multiple Catheter ✓ System Retraining & Dashboards 	architecture	 ✓ Ensemble Model for Live RCNN and ResNet ✓ Mask RCNN for pixel wis ✓ Initiation of other work 	e tracking with e segmentation
CNN	ResNET	Fas	ter RCNN 🗾 📃 🕨	Aask RCNN

Artificial Intelligence Progress

Ultra Rapid Data Analysis and Optimization

- Image Recognition Catheters, cryoballoon, left atrial appendage devices, valves, leads for heart failure
- ✓ Signal Processing
- ✓ Inference
- ✓ Prediction
- ✓ Voice
- Product Hardware (GPU)

- AI Server
 - 15 hours for epoch (1 iteration of data)
 - 20 epochs (14 days)

Nvidia-DGX Server

- 8 mins-epoch using 7 GPUS
- 100 epochs 18 hrs., 200 epochs – 1day-15hrs

Training Time Using DGX

AI IN EP-Training and Analysis

Catheter Detection

Al Architecture for Training

Resnet due to 20 layers provides better classification between catheter vs non catheter objects

AI IN ELECTROPHYSIOLOGY-*Training*

On each layer we have a set of filters, the weights of these filters are adjusted during training

Each filter generates a feature map -the rectangles that we can see on the convolutional neural network diagram

On each layer we are detecting more features and the relation with other features detected in the neural network, e.g. catheter and number on rings.

In current mapping technique- Faster RCNN being used using 101 layers which analyzes the whole frame

Catheter Tip Detection-First Research Using Al

Catheter Tip Detection-1000 hours of Patient Data

Tensorboard shows training metrics across different models with different training configuration

Input Data-Mathematical Algorithms to Process-Output Data

Real Time Catheter Tip Detection

AI Enabled Catheter Tip Detection-Using Faster RCNN with 101 layers

Current Technology

Standard Mapping

Integration of Cryoballoon and 3D Maps

3D Mapping from 2D Images and 3D localization of Balloon

3D localization of Balloon

Over 300 Procedures Performed

Automatic 3D localization of Balloon- Mask RCNN

AI Enabled Automatic 3D location of Cryoballoon

Laser Balloon-Detection of Variable Shapes

- Includes the balloon shape before, during and after the ablation
- Over 6000 datasets used

Training and automatic detection for Multiple Shapes

3D localization of Balloon With Deformable Shapes

Automatic detection of balloon and different markers

Prediction of response to cardiac resynchronization therapy using LV pacing lead position

There is evidence that a left ventricular (LV) lead localized to the latest contracting LV site predicts superior response, compared to an LV lead localized remotely from the latest contracting LV site.

- 33 patients meeting conventional indications for CRT with a mean New York Heart Association class of 2.8 ± 0.4 and mean LV ejection fraction of 28 ± 9 %.
- Overall, 55 % of patients were echocardiographic responders by ESV criteria. Patients with
- LV lead concordant to the latest contracting site (T2CL) had a response rate of 92 %, compared to a response rate of 33 % for those without T2CL (p = 0.003).

CRT Response Based on Site of Latest Activation

Identifying Appropriate Pacing Site

Pacing Site Prediction in CRT

3D Reconstruction Using Minimal Points

Using 3D images and CT models to create 3D reconstruction using AI

AI IN ELECTROPHYSIOLOGY

- Background
- Data Analysis/Training
- Diagnosis/Treatment
- Prediction

AI Enabled Platform LAA Occlusion Device

- Cost
- Need for multiple specialties:
 - EP : Cardiology Anesthesia ECHO
- Need for General anesthesia-Many cases

Al Based Solution

- Appendage size prediction for device in advance
- Real time integration of CT in 3D and 2D
- Real time navigation of device to the LAA
- 3D localization of Watchman

ECG/EGM/Map Analysis-Reinforcement Learning

Fast Catheter Mapping: Automatically find out the best points to include in the map

A reward function is created based on the acceptance or rejection of a selected point and a policy gets defined by Q-Learning

Intelligent Catheter Mapping:

Find out the optimal path to arrive at the region of interest.

Catheter Tissue Contact Given the mapping characteristics and outcomes, find out if optimal contact force is currently in use

From the impedance and other data, identify the point characteristics that were used in an accepted map. Dynamically determine the range of values that will result in an optimal contact

Arrhythmia Site Prediction

DATA FORMAT FOR THE ECG QRS COMPLEX

- ResNet-like architecture with 1D Convolution layers and Dropouts
- MIT-BIH Arrhythmia Database
 - <u>https://www.physionet.org/physiobank/</u> <u>database/html/mitdbdir/mitdbdir.htm</u>

Algorithms tested with

AI Enabled Analysis

Trials for Arrhythmia Site Prediction

Trial 1-Model		Comment	acc	FeiTme 31) 455/73023 Time 2017 26 13 56 39
Bidirectional LSTM (Long/Short Term Memory)		Correctly predicts ECG signals with ~99% test accuracy	0.850 0.750 0.650 0.550	
Conv1D-6conv1fc (in-sample dist.)			0.450 0.000 20.00 40.00 60.00 80.00 100.0	
Bidirectional LSTM (out-sample dist.)		Models didn't generalize well for signals (with significantly different pattern) it has not	<pre>val_acc 1.00 0.800</pre>	Reads 0.55 0.71 tem
Conv1D-6conv1fc (out-sample dist.)		seen before	0.600	
Trial 2-ResNet1D with Dropout (out- sample dist.)	~98% accuracy after adding dropouts after each max-pooling layer and to the last fully			
ResNet1D with Dropout (out-sample dist.) – different optimizer configuration	conne	ed layer for better regularization.		
BiLSTM, Conv1D-6conv1fc (out-sample dist.)			600 400 200	
			0.000 40.00 80.00 120.0 160.0 200.0	

Drop out function forces neural network to learn more robust features to help with random subsets

Infrastructure (Continuous AI TRAINING)-Hardware (fast computing power)

Prediction Real Time Analysis Mapping Navigation

Deep Learning GPU Training System

AI in EP

Summary

Al in EP

Prediction

Next Generation EP Solutions

Next Generation EP Solutions