What Does The Future Hold in Ablation

Jacob S. Koruth, MD Director, Experimental Laboratory Helmsley Electrophysiology Center, Mount Sinai Medical Center, New York, NY

Jacob.koruth@mountsinai.org

Disclosures

- Research Grants: Biosense Webster, Farapusle,Affera Vytronus, Medlumics, Luxcath, Cardiofocus, Cardionext
- Consultant: Abbott, Farapulse

This talk discusses various investigational non-FDA approved devices and technologies

The Future of Thermal ablation

Radiofrequency, Laser, Utrasound

Controlling Lesions Based on "Tissue Temperature"

MOUNT SINAI SCHOOL OF MEDICINE Advantages of Interface Temperature

- Another measure of <u>contact</u>- not just force
- Direct measure of mechanism of tissue injury
 - Allows for controlled lesion delivery
 - Avoid char/ steam pops
 - Temperature monitoring is also stability monitoring

MOUNT SINAI SCHOOL OF MEDICINE

Chamber Specific Lesion Dimension Prediction

Embedded surface temperature sensors in 56 hole porous tip

MOUNT SINAI SCHOOL OF MEDICINE

Temperature-Controlled Radiofrequency Ablation for Pulmonary Vein Isolation in Patients With Atrial Fibrillation

Jin Iwasawa, MD,^a Jacob S. Koruth, MD,^a Jan Petru, MD,^b Libor Dujka, MD,^b Stepan Kralovec,^b Katerina Mzourkova,^b Srinivas R. Dukkipati, MD,^a Petr Neuzil, MD, PHD,^b Vivek Y. Reddy, MD^{a,b}

Temperature Controlled-Irrigated RF: Diamond tip ablation

- Diamond-tip radiofrequency (RF) irrigated catheter
- Six thermocouples

D											
(M	80									300	
	70			ib.	. 1	emp				250	
	60		14	man	TRO	\sim	\mathcal{N}	1044	ali	250	(
ower (50		N		1	, A	D V	V VI		200	(ohms
+	40	-	/	M	K			1	1		DCe
ip (deg)	30	/			N	Row	er			150	mpedar
eu	20	in.	vi.			Mar	en w	~~~~	N	100	
	10	ŀ				~					
	0	Ŀ	,		,	,	,	,		l50	
		U	20	40	60 Time	80 e(sec)	100	120	140		
				Temp -		Power		mpedan	ce		

I				
		Study Group (n = 35)	Control Group (n = 35)	p Value
	No. of ablation lesions per patient	83.6 ± 13.2	151.6 ± 38.2	<0.001
	Left PV lesion set	$\textbf{37.9} \pm \textbf{8.8}$	$\textbf{60.2} \pm \textbf{18.2}$	< 0.001
	Right PV lesion set	46.1 ± 9.5	91.3 ± 26.0	<0.001
1	RF application time per	18.8 ± 1.9	$\textbf{35.1} \pm \textbf{4.1}$	< 0.001
	point, s			
	Left PV lesion set	17.6 ± 1.9	33.8 ± 5.4	< 0.001
	Right PV lesion set	197 ± 24	35.8 ± 4.2	< 0.001
ł	Total RF application time per patient, min	$\textbf{26.3} \pm \textbf{5.2}$	89.2 ± 27.2	<0.001
	Left PV lesion set	11.2 ± 3.3	$\textbf{34.4} \pm \textbf{13.1}$	< 0.001
	Right PV lesion set	$\textbf{15.1}\pm\textbf{3.7}$	$\textbf{54.8} \pm \textbf{17.9}$	< 0.001
	Fluoroscopy time, min	11.2 ± 8.5	19.5 ± 6.8	< 0.001
1	Average impedance drop, Ω	13.1 ± 3.5	8.1 ± 2.1	< 0.001
	Average power, W	36.3 ± 2.6	31.2 ± 2.5	< 0.001

MOUNT SINAL SCHOOL OF MEDICINE Iwasawa J, Koruth JS, Reddy VY. J Am Coll Cardiol 2017 Aug

MOUNT SINAI SCHOOL OF MEDICINE

Irrigated RF and Atrial Ablation.....

High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization. Leshem E, Anter E. JACC Clin Electrophysiol. 2018

Fast Ablation: Right Superior PV Isolation 90W/4 Seconds

MOUNT SINAL

MOUNT SINAL

Pulmonary Vein Isolation With Very High Power, Short Duration, Temperature-Controlled Lesions

Vivek Y. Reddy, MD,^{a,b} Massimo Grimaldi, MD,^c Tom De Potter, MD,^d Johan M. Vijgen, MD,^e Alan Bulava, MD, PhD,^f Mattias Francis Duytschaever, MD,^g Martin Martinek, MD,^h Andrea Natale, MD,ⁱ Sebastien Knecht, MD, PhD,^g Petr Neuzil, MD, PhD,^b Helmut Pürerfellner, MD^h

- 52 PAF pts
- Procedure time =105 mins
- Fluoroscopy = 6.6 mins
- 79% PVI with vHPSD alone

MOUNT SINAL SCHOOL OF MEDICINE

Q-dot - vHPSD

Lattice Ablation (Sphere 9) Catheter

Combined ablation and mapping catheter

- 8F bidirectional deflectable expandable conductive nitinol mesh
- Diameter- <u>9mm with 9 Temp</u> sensors/mini electrodes
- Central irrigation

MOUNT SINAL SCHOOL OF MEDICINE

Lattice Ablation (Sphere 9) Catheter

Temperature controlled irrigated RF

- Mini electrodes + Central electrode
- Tissue stability- Compressible
- Faster, Wider, Deeper lesions
- Electroanatomical mapping magnetic sensor
- Anatomy acquisition respiratory gating
- Contact : Impedance between microelectrodes and center electrode

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAL SCHOOL OF MEDICINE

Wide Tip RF delivery

Preclinical Swine Survival

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAI SCHOOL OF MEDICINE

Preclinical

Koruth, Kuroki, Reddy 2019 (Under Review)

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAI SCHOOL OF MEDICINE Rapid Pulmonary Vein Isolation using an Irrigated Temperature-Controlled Lattice Ablation Catheter: A First-in-Human Clinical Experience HRS 2019- Vivek Reddy et al

Slide: Courtesy Reddy / Neuzil 2019

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAL SCHOOL OF MEDICINE Novel Irrigated Temperature-Controlled Lattice Ablation Catheter for Ventricular Ablation A Preclinical Multimodality Biophysical Characterization. Shapira-Daniels, Anter E et al

SCHOOL OF MEDICINE SCHOOL OF

What is Pulsed Field Ablation (IRE)?

- Novel ablation- Ultra-short, high-voltage electrical impulses
- Large increase in the electric field across cell membrane Nanoscale pores
- Specific thresholds for target tissue
- Permanent nanopores Cell death

MOUNT SINAL SCHOOL OF MEDICINE Expert Rev Cardiovasc Ther. 2018 May; 16(5):349-360, Chang D.C., and Reese T.S.. Biophys J 1990; 58

Pulsed Field Ablation

- Non-thermal ablation despite electric field of 1000 V/cm short duration, limited pulses
- Effect/Lesion volume determined by
 - Electric field distribution
 - Tissue specific thresholds
- Affects only cell membrane: Extracellular matrix is intact

Pulsed Field Ablation

• IRE -Unipolar pulse (s) applied for a duration of microseconds: ++muscle contractions requiring NM blockade

• IRE- Bipolar pulse : Effective but with less muscular contractions

Hsiao CY: J Med Ultrasound. 2017 Oct-Dec;25(4):195-200.

High-frequency irreversible electroporation (H-FIRE) Arena CB, Davalos RVBiomed Eng Online. 2011 Nov 21; 10():102.

PFA - Ventricular Myocardium Monophasic - Monopolar

Epicardial ablation

- 50-360 J
- 5/56 arteries :intimal hyperplasia (<50% stenoses)
- 5 direct LAD no change
- Depth $6.5 \pm 2.7 \text{ mm}$

du Pré BC, Wittkampf FH, et al. Europace 2013 15, 144-149

Epicardial ablation:

- 50-200-J
- Depth 5-12 mm
- Width 16 20 mm
- 200-J : Transmural lesions & significant tissue shrinkage were observed

м s 🐨 s м

Neven K, Wittkampf F, et al. Circ AE 2014;7:728-733.

Epicardial Pulsed Electric Field Therapy

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAL SCHOOL OF MEDICINE

Pulsed Field Ablation: Catheter Design

- 12F OTW pentaspline catheter
- PFA-specific generator
- Bipolar/biphasic waveform
- Farawave/Farapulse

MOUNT SINAI SCHOOL OF MEDICINE

MOUNT SINAL

Pre-Clinical Evaluation of Pulsed Field Ablation: Electrophysiological and Histological Assessment of Thoracic Vein Isolation

Ablation of Atrial Fibrillation With Pulsed Electric Fields

An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation

Vivek Y. Reddy, MD,^{a,b} Jacob Koruth, MD,^a Pierre Jais, MD,^c Jan Petru, MD,^b Ferdinand Timko, MD,^d Ivo Skalsky, MD,^d Robert Hebeler, MD,^e Louis Labrousse, MD,^f Laurent Barandon, MD,^f Stepan Kralovec,^b Moritoshi Funosako, MD,^b Boochi Babu Mannuva, MD,^b Lucie Sediva, MD,^b Petr Neuzil, MD, PHD^b

- Acute isolation : 57 PVs in 15 patients
- Mean of 3.26 ± 0.5 lesions/PV
- Procedure : $67 \pm 10.5 \text{ min}$
- PEF catheter entry into LA to time of removal: 26 ± 4.3 min
- Total ablation time (was 19 ± 2.5 min (range 16 to 23 min)

• All lesions was <60 s/patient

Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation

Vivek Y. Reddy, MD,^{a,b} Petr Neuzil, MD, PHD,^a Jacob S. Koruth, MD,^b Jan Petru, MD,^a Moritoshi Funosako, MD,^a Hubert Cochet, MD,^c Lucie Sediva, MD,^a Milan Chovanec, MD,^a Srinivas R. Dukkipati, MD,^b Pierre Jais, MD^c

MOUNT SINAI SCHOOL OF MEDICINE MOUNT SINAI SCHOOL OF MEDICINE

Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation

Vivek Y. Reddy, MD,^{a,b} Petr Neuzil, MD, PHD,^a Jacob S. Koruth, MD,^b Jan Petru, MD,^a Moritoshi Funosako, MD,^a Hubert Cochet, MD,^c Lucie Sediva, MD,^a Milan Chovanec, MD,^a Srinivas R. Dukkipati, MD,^b Pierre Jais, MD^c

MOUNT SINAL

Pulsed Field Ablation: Delayed Enhancement

Endocardial Focal PFA Bipolar and Biphasic

12F Deflectable "FLEX" Catheter

• Four splines / four electrodes each

Koruth, Kuroki, Reddy et al- Manuscript accepted Europace

MOUNT SINAL SCHOOL OF MEDICINE

Endocardial Focal PF Ablation

- CS and RV pacing catheters
- Synchronized delivery during joined RV and CS pacing
- Pre- and post-ablation pacing threshold recorded in 2/4 swine:
 Pulse width of 2ms pacing

through distal bipoles

Koruth, Kuroki, Reddy et al-Europace 2019

Endocardial Focal PFA Ablation

MOUNT SINAI SCHOOL OF MEDICINE

Koruth, Kuroki, Reddy et al-Europace 2019

MOUNT SINAL SCHOOL OF MEDICINE

MS%XSM

Endocardial Focal PFA Ablation

MOUNT SINAI

CHOOL OF

M S

Koruth, Kuroki, Reddy et al- Europace 2019

Histological Findings - Focal PFA

M 5 🎬 S M .

MOUNT SINAI SCHOOL OF MEDICINE мѕ≆ѕм

MOUNT SINAL SCHOOL OF MEDICINE

Koruth, Kuroki, Reddy et al- Manuscript under review

8F Deflectable "POINT" Catheter

SCHOOL OF

Pulse Field Ablation- ICE Imaging

MOUNT SINAI SCHOOL OF MEDICINE

- Echodense lesion immediate post ablation
- Echodensity/edema progresses over time

MOUNT SINAL SCHOOL OF MEDICINE

What's out there in PFA?

RF Balloon Ablation Catheter Visually-Guided, Titrate-able RFA

One Shot Multipoint Irrigated RF

May improve procedural efficiency

Built-in Cameras Validation of electrode contact via realtime direct visualization

Integrated Mapping and Pacing

Courtesy V Reddy

Multi-Electrode Balloon Ablation Catheter Helios: Directionally-Titratable RF Energy

8 cm

Visually-Guided Laser Balloon Next-Gen Improvements → Shorten Procedure Time

- Gen 2: Excalibur
 - More Compliant Balloon
 - <u>Goal</u>: Easier, faster, maximal balloon-tissue conformance
- Gen 3: X3 RAPID
 - Continuous ablation at higher
 power → 'drag and burn' lesion
 - **o Dose-equivalent to current titration**
 - Controlled by single-axis motor
 - <u>Goal</u>: Isolate PV < 3 minutes of ablation ... but preserve ability to titrate energy along balloon circumference

