Esophageal Cancer

Wesley A. Papenfuss MD FACS Surgical Oncology Aurora Cancer Care David Demos MD
Thoracic Surgery
Aurora Cancer Care

No Disclosures

Learning Objectives

Review the classification scheme for GE junction cancers

Review workup and evaluation

Review Minimally Invasive Esophagectomy

Epidemiology

Esophageal Cancer is 6th leading cause of death worldwide

Incidence has been rising in Western countries ~17,000 cases anticipated 2015 in US

Adenocarcinoma – 70% Obesity, GERD, Barretts

Squamous Cell Carcinoma – 30% Tobacco, Alcohol

Pohl & Welch, JNCI 2005

Cancer at the GE Junction

Siewart Classification

I – located in the distal 5 cm of esophagus, but does not cross GE junction

II – centered around the GE junction

III – greater than 5 cm distal to the GE junction

Treated as Gastric Cancer

Patient Examples of GE Junction Cancer

Esophageal Cancer I/II

Gastric Cancer III

Evaluation of the Esophageal Mass

High quality endoscopy

Defines the anatomic esophagogastric junction

Describes the anatomic location

Endoscopic ultrasound (EUS)

Assessment of T-stage; Nodal involvement

FNA of suspicious node

CT / PET

Staging of Esophageal Cancer

T Stage

T1a : lamina propria, muscularis mucosa

T1b: submucosa

T2: muscularis propria

T3: adventitia

T4: adjacent structures

N Stage

N1: 1-2 nodes

N2: 3-6 nodes

N3: \geq 7 nodes

Accuracy of EUS for T Stage / Nodes

- Operator dependent
- Very good at early vs late (ie T1 vs T3/4)
- More difficult discerning between earlier lesions (ie T1a vs T1b vs T2)
- Review of 107 patients with early stage (Tis, T1) compared to final pathology
- Understaging:
 - 30% of T1a
 - 49% of T1b
- Overstaging:
 - 29% of T1a
 - 51% of T1b

Risk of Nodal Disease Based on T stage

- Lymph node involvement greatest predictor of prognosis
- T stage is best predictor of lymph node involvement

	T1	T1a	T1b	T2	Т3	T4
Squam us	20%	0-3%	5-40%		60 %	80 %
Adeno	10%	0-2%	0-40%		80 %	90 %

Staging Laparoscopy

Used selectively in patient with Type II/III tumors

Yield is variable (5%-30%)

Extraluminal assessment of tumor location

Evaluate future conduit

Placement of feeding jejunostomy

Endoscopic Therapies for Tis or T1a EMR / ESD followed by ablation

Esophagectomy

Locally Advanced (T2 or N+)

Neoadjuvant therapy

Metastatic

Definitive Chemotherapy

Endoscopic Therapies

Endoscopic Mucosal Resection
Endoscopic Submucosal Dissection
Ablation of Surrounding Barrett's

В

Locally Advanced Disease

T2 tumors

N+ disease

Neoadjuvant Chemotherapy & Radiation

Paclitaxel and Carboplatin weekly x 5 weeks

50.4 Gy over 28 fractions

CROSS Trial

Randomized patients to preop chemoxrt + surgery vs. surgery alone

Carboplatin & Paclitaxel

41.4 Gy radiation over 23 fractions

RO resection rate (92% vs 69%)

29% complete pathologic response

23% adenocarcinoma

49% squamous

CROSS Patterns of Recurrence

CRT had lower local recurrence rate

Anastomosis: 2.8% vs 8.7%

Mediastinum: 7.0% vs 20.5%

CRT had lower distant recurrence rate

Carcinomatosis: 4.2% vs 13.7%

Hematogenous: 28.6% vs 35.4%

No difference in Nodal recurrence

Celiac, Periaortic, Supraclavicular

MAGIC Trial

Evaluated Perioperative Chemotherapy vs Surgery Alone

Gastric Cancer including the lower 1/3 of esophagus 25% were GE Jxn (11%) or Esophageal (14%)

Epirubicin/Cisplatin/Fluoruracil – 3 cycles preop / 3 cycles post op

86% of patients completed preop chemo

55% started post op chemo

41% of patients assigned to the chemotherapy group completed all 6 cycles

FLOT

FLOT

Fluorouracil / leucovorin

Oxaliplatin

Docetaxel

Phase 3 FLOT 4 - abstract

FLOT vs ECF/ ECX

Improved OS (50 v 35 mo)

Improved PFS (30 v 18 mo)

Improved R0

Smaller tumors

FLOT vs Cross

Propensity matched study

No survival benefit

CRT had better tumor response, fewer nodes

ESOPEC

Randomizing pts to FLOT vs CROSS

Opened 2016

Expected 2023

https://clinicaltrials.gov/show/NCT02509286

ESMO 2017 – Abs LBA27 Eur J Surg Onc 2017 BMC Cancer 2016

Surgical Approaches to Esophagectomy

Transhiatal

Abdominal incision

Neck incision

Anastomosis in the Neck

Ivor Lewis

Abdominal incision

Right chest incision

Anastomosis in the Chest

Minimally Invasive Esophagectomy

FIGURE 1-17 Completed minimally invasive esophagectomy

Comparison of Open Approaches

	Transhiatal %	Ivor Lewis %	P-Value
Pneumonia	14	16	NS
Sepsis/Shock	17.8	20.9	NS
Return to OR	10.9	14.5	0.046
Morbidity	49.1	49.4	NS
Serious Morbidity	39.6	43.5	NS
Mortality	2.9	4.7	0.095

Minimally Invasive Esophagectomy

Improvement in Morbidity

Extent of Lymphadenectomy

Multiple approaches described

>1000 MIE

48% Neck Anastomosis 52% Chest Anastomosis

	Neck	Chest	P value
RLN	8%	1%	<0.001
Leak	5%	4%	0.4
Mortality	2.5%	0.9%	0.08

MIE vs Traditional Esophagectomy

RCT of 115 patients to MIE (prone) vs Right

Thoractomy, Laparotomy, Cervical incision

> 90% had modern neoadjuvant chemoradiation: carboplatin, paclitaxel, XRT

Significant difference in early postoperative pulmonary complications favoring MIE 34% vs 12% in hospital

No difference in LN, RO, Mortality

Extent of Mediastinal Lymphadenectomy and Survival in Superficial Esophageal Squamous Cell Carcinoma

Seong Yong Park¹ • Dae Joon Kim¹ • Taeil Son² • Yong Chan Lee³ • Chang Young Lee¹ • Jin Gu Lee¹ • Kyung Young Chung¹

- Single-institution retrospective study of 129 patients undergoing curative-intent esophagectomy for pT1 ESCC
 - Group 1 (n=42): standard MLND
 - Group 2 (n=87): Extensive MLND

 Table 3
 Surveillance data

Variable	Group 1 $(n = 42)$	Group 2 $(n = 85)$	p value
Recurrence	10 (23.8%)	3 (3.5%)	0.001
Loco-regional	6 (14.3%)	0	0.001
Distant	2 (4.8%)	0	0.108
Combined	2 (4.8%)	3 (3.5%)	1.0
Death	14 (33.3%)	5 (5.9%)	< 0.001
Cancer related	7 (16.7%)	3 (3.5%)	0.015
Intercurrent disease	5 (11.9%)	2 (2.4%)	0.039
Unknown	2 (4.8%)	0 (0%)	0.108

The Aurora Approach

THE TEEM

Trans

Hiatal

Esophagectomy

Transcervical

Endoscopic

Esophageal

Mobilization

**Da Vinci Xi Robot-Assisted

THE TEEM Approach

- Aurora one of few centers around the world to use this technique
- Combines the oncologic advantage of transthoracic approach with the morbidity advantage of the transhiatal approach

THE TEEM

		Operative Data		Complication	ıs			
Year Author	Country	N Abdomen	OR time No	o of LNs <mark>Pulmonary</mark>	Leak	RLN Palsy	LOS	30d Mort
1993 Bumm	Germany	30 Open		4 (13.3%)	6 (20%)	2 (6.6%)		2 (6.6%)
2004 Tangoku	Japan	41	269	10 (24.4%)	4 (9.8%)	15 (36.6%)		
2010 Wu	China	40 Open 32 (80%), Lap 8 (20%)	220	12.61 (2.5%)	3 (7.5%)	2 (5%)	11.4	
2011 Parker	US (Mayo Florida)	8 Laparoscopic	292	23	2 (25%)	2 (25%)	7	0
2012 Feng	China	27 Open	194	11.47 (26%)	5 (18%)	5 (18%)	11.1	1 (3.7%)
2014 Wang	China	70	150	13.84 (5.7%)	5 (7.1%)	2 (2.9%)	10	
2015 Okumura et al	Japan	63 Open	403	22.94 (6.3%)	14 (22.2%	6) 6 (11.5%)		1 (1.6%)
2016 Nomura	Japan	20 Open	315	8.2				
2016 Mori	Japan	22 DaVinci S for mediastinum	524	30	4 (18%)	1 (4.5%)	18	0
2017 Fujiwara	Japan	60	363	384 (6.7%)	9 (15%)	20 (33.3%)	31	0
2018 Aurora Health Ca	re US							

Aurora 2015-2016	Time	Afib	Leak	VC	Pneum	Bleed	30 d mort
N= 26	221 min	37%	6%	15%	7%	7%	0

Thank You

Management of Complete response for SCC

Complete pathologic response is higher in SCC than Adeno

Progression free survival is better in patients treated with surgery

Overall survival is not improved

Cancer specific survival was improved in surgery groups

? High mortality rate in surgery arm (10%)

81 patients from 2001 – 2012

Endoscopic resection of T1a patients

Ablation of associated Barrett's

7 patients had T1b disease (all negative margins)

3.25 years of follow up

84% eradication of HGD

One patient developed invasive carcinoma

Treated endoscopically

100% cancer specific survival

Human epidermal growth factor (HER2)

Associated with cell proliferation

Amplified in 10-25% of GE Jxn cancers

Trastuzumab

Monoclonal antibody to HER2

Trastuzumab for Gastric Cancer Study (ToGA)

Compared Chemotherapy +/- trastuzumab
Capecitabine/fluorouracil plus cisplatin

Locally advanced or Metastatic Gastric/EGJ cancers

Approximately 20% were EGJ

Improvements in OS, PFS

Evaluate the addition of Trastuzumab to Neoadjuvant therapy for GE Jxn cancer Carboplatin, Paclitaxel, XRT +/- trastuzumab
Anticipated 480 Enrollees

2010 – 2018

http://clinicaltrials.gov/show/NCT01196390

Local PI: Dr. Robert Behrens

